Pacemaker 2.0
Configuration Explained

An A-Z guide to Pacemaker's Configuration Options

Edition 13

		[image:]

	

Written by the Pacemaker project contributors

Legal Notice

		Copyright © 2009-2020 The Pacemaker project contributors.
	

		The text of and illustrations in this document are licensed under version 4.0 or later of the Creative Commons Attribution-ShareAlike International Public License ("CC-BY-SA")
 ⁠[1].
	

		In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		In addition to the requirements of this license, the following activities are looked upon favorably:
			
					If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to provide updated documents. This notification should describe modifications, if any, made to the document.
				

	
					All substantive modifications (including deletions) be either clearly marked up in the document or else described in an attachment to the document.
				

	
					Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy or CD-ROM expression of the author(s) work.
				

	

Abstract

			The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To achieve this, it will focus exclusively on the XML syntax used to configure Pacemaker's Cluster Information Base (CIB).
		

 ⁠Preface

 ⁠1. Document Conventions

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

 ⁠1.1. Typographic Conventions

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to a virtual terminal.
			

			The first example highlights a particular key to press. The second example highlights a key combination: a set of three keys pressed simultaneously.
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog-box text; labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above: username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

 ⁠1.2. Pull-quote Conventions

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
​package org.jboss.book.jca.ex1;
​
​import javax.naming.InitialContext;
​
​public class ExClient
​{
​ public static void main(String args[])
​ throws Exception
​ {
​ InitialContext iniCtx = new InitialContext();
​ Object ref = iniCtx.lookup("EchoBean");
​ EchoHome home = (EchoHome) ref;
​ Echo echo = home.create();
​
​ System.out.println("Created Echo");
​
​ System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
​ }
​}

 ⁠1.3. Notes and Warnings

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled “Important” will not cause data loss but may cause irritation and frustration.
			

Warning

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

 ⁠2. We Need Feedback!

		If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla
 ⁠[2] against the product Pacemaker.
	

		When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Explained
	

		If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
	

[2]
			http://bugs.clusterlabs.org
		

 ⁠Chapter 1. Read-Me-First

 ⁠1.1. The Scope of this Document

			This document is intended to be an exhaustive reference for configuring Pacemaker.
		

			To achieve this, it focuses on the XML syntax used to configure the CIB. For those that are allergic to XML, multiple higher-level front-ends (both command-line and GUI) are available. These tools will not be covered at all in this document
 ⁠[3].
		

			Users may be interested in other parts of the Pacemaker documentation set, such as Clusters from Scratch, a step-by-step guide to setting up an example cluster, and Pacemaker Administration, a guide to maintaining a cluster.
		

 ⁠1.2. What Is Pacemaker?

			Pacemaker is a high-availability cluster resource manager — software that runs on a set of hosts (a cluster of nodes) in order to preserve integrity and minimize downtime of desired services (resources).
 ⁠[4] It is maintained by the ClusterLabs community.
		

			Pacemaker’s key features include:
		
	
					Detection of and recovery from node- and service-level failures
				

	
					Ability to ensure data integrity by fencing faulty nodes
				

	
					Support for one or more nodes per cluster
				

	
					Support for multiple resource interface standards (anything that can be scripted can be clustered)
				

	
					Support (but no requirement) for shared storage
				

	
					Support for practically any redundancy configuration (active/passive, N+1, etc.)
				

	
					Automatically replicated configuration that can be updated from any node
				

	
					Ability to specify cluster-wide relationships between services, such as ordering, colocation and anti-colocation
				

	
					Support for advanced service types, such as clones (services that need to be active on multiple nodes), stateful resources (clones that can run in one of two modes), and containerized services
				

	
					Unified, scriptable cluster management tools
				

Fencing

				Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the ability to ensure that it is not possible for a node to be running a service. This is accomplished via fence devices such as intelligent power switches that cut power to the target, or intelligent network switches that cut the target’s access to the local network.
			

				Pacemaker represents fence devices as a special class of resource.
			

				A cluster cannot safely recover from certain failure conditions, such as an unresponsive node, without fencing.
			

 ⁠1.3. Cluster Architecture

			At a high level, a cluster can be viewed as having these parts (which together are often referred to as the cluster stack):
		
	
					Resources: These are the reason for the cluster’s being — the services that need to be kept highly available.
				

	
					Resource agents: These are scripts or operating system components that start, stop, and monitor resources, given a set of resource parameters. These provide a uniform interface between Pacemaker and the managed services.
				

	
					Fence agents: These are scripts that execute node fencing actions, given a target and fence device parameters.
				

	
					Cluster membership layer: This component provides reliable messaging, membership, and quorum information about the cluster. Currently, Pacemaker supports Corosync as this layer.
				

	
					Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that occur in the cluster. These events may include nodes joining or leaving the cluster; resource events caused by failures, maintenance, or scheduled activities; and other administrative actions. To achieve the desired availability, Pacemaker may start and stop resources and fence nodes.
				

	
					Cluster tools: These provide an interface for users to interact with the cluster. Various command-line and graphical (GUI) interfaces are available.
				

			Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.
		

 ⁠[image: Example cluster stack]

Figure 1.1. Example Cluster Stack

 ⁠1.4. Pacemaker Architecture

			Pacemaker itself is composed of multiple daemons that work together:
		
	
					pacemakerd
				

	
					pacemaker-attrd
				

	
					pacemaker-based
				

	
					pacemaker-controld
				

	
					pacemaker-execd
				

	
					pacemaker-fenced
				

	
					pacemaker-schedulerd
				

 ⁠[image: Pacemaker software components]

Figure 1.2. Internal Components

			The Pacemaker master process (pacemakerd) spawns all the other daemons, and respawns them if they unexpectedly exit.
		

			The Cluster Information Base (CIB) is an XML representation of the cluster’s configuration and the state of all nodes and resources. The CIB manager (pacemaker-based) keeps the CIB synchronized across the cluster, and handles requests to modify it.
		

			The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it synchronized across the cluster, and handles requests to modify them. These attributes are usually recorded in the CIB.
		

			Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are necessary to achieve the desired state of the cluster.
		

			The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster node, and returns the result.
		

			The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents (either directly, or via requests to the fencer peers on other nodes), and returns the result.
		

			The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the cluster membership and orchestrating all the other components.
		

			Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established. The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then asking the executors (either directly on the local node, or via requests to controller peers on other nodes) and the fencer to execute any necessary actions.
		
Old daemon names

				The Pacemaker daemons were renamed in version 2.0. You may still find references to the old names, especially in documentation targeted to version 1.1.
			
	 Old name 	 New name
	
							
								attrd
							

								
							
								pacemaker-attrd
							

							
	
							
								cib
							

								
							
								pacemaker-based
							

							
	
							
								crmd
							

								
							
								pacemaker-controld
							

							
	
							
								lrmd
							

								
							
								pacemaker-execd
							

							
	
							
								stonithd
							

								
							
								pacemaker-fenced
							

							
	
							
								pacemaker_remoted
							

								
							
								pacemaker-remoted
							

							

 ⁠1.5. Node Redundancy Designs

			Pacemaker supports practically any node redundancy configuration including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.
		

			Active/passive clusters with two (or more) nodes using Pacemaker and DRBD are a cost-effective high-availability solution for many situations. One of the nodes provides the desired services, and if it fails, the other node takes over.
		

 ⁠[image: Active/Passive Redundancy]

Figure 1.3. Active/Passive Redundancy

			Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing several active/passive clusters to be combined and share a common backup node.
		

 ⁠[image: Shared Failover]

Figure 1.4. Shared Failover

			When shared storage is available, every node can potentially be used for failover. Pacemaker can even run multiple copies of services to spread out the workload.
		

 ⁠[image: N to N Redundancy]

Figure 1.5. N to N Redundancy

[3]
				I hope, however, that the concepts explained here make the functionality of these tools more easily understood.
			

[4]
				Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance computing (HPC), but Pacemaker is not intended for those purposes.
			

 ⁠Chapter 2. Cluster-Wide Configuration

 ⁠2.1. Configuration Layout

			The cluster is defined by the Cluster Information Base (CIB), which uses XML notation. The simplest CIB, an empty one, looks like this:
		

 ⁠Example 2.1. An empty configuration
​<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
​ <configuration>
​ <crm_config/>
​ <nodes/>
​ <resources/>
​ <constraints/>
​ </configuration>
​ <status/>
​</cib>

			The empty configuration above contains the major sections that make up a CIB:
		
	
					cib: The entire CIB is enclosed with a cib tag. Certain fundamental settings are defined as attributes of this tag.
				
	
							configuration: This section — the primary focus of this document —  contains traditional configuration information such as what resources the cluster serves and the relationships among them.
						
	
									crm_config: cluster-wide configuration options
								

	
									nodes: the machines that host the cluster
								

	
									resources: the services run by the cluster
								

	
									constraints: indications of how resources should be placed
								

	
							status: This section contains the history of each resource on each node. Based on this data, the cluster can construct the complete current state of the cluster. The authoritative source for this section is the local executor (pacemaker-execd process) on each cluster node, and the cluster will occasionally repopulate the entire section. For this reason, it is never written to disk, and administrators are advised against modifying it in any way.
						

			In this document, configuration settings will be described as properties or options based on how they are defined in the CIB:
		
	
					Properties are XML attributes of an XML element.
				

	
					Options are name-value pairs expressed as nvpair child elements of an XML element.
				

			Normally, you will use command-line tools that abstract the XML, so the distinction will be unimportant; both properties and options are cluster settings you can tweak.
		

 ⁠2.2. CIB Properties

			Certain settings are defined by CIB properties (that is, attributes of the cib tag) rather than with the rest of the cluster configuration in the configuration section.
		

			The reason is simply a matter of parsing. These options are used by the configuration database which is, by design, mostly ignorant of the content it holds. So the decision was made to place them in an easy-to-find location.
		

 ⁠Table 2.1. CIB Properties
	Field 	Description
	
						
							admin_epoch
						

							
						
							 When a node joins the cluster, the cluster performs a check to see which node has the best configuration. It asks the node with the highest (admin_epoch, epoch, num_updates) tuple to replace the configuration on all the nodes — which makes setting them, and setting them correctly, very important. admin_epoch is never modified by the cluster; you can use this to make the configurations on any inactive nodes obsolete. Never set this value to zero. In such cases, the cluster cannot tell the difference between your configuration and the "empty" one used when nothing is found on disk.
						

						
	
						
							epoch
						

							
						
							 The cluster increments this every time the configuration is updated (usually by the administrator).
						

						
	
						
							num_updates
						

							
						
							 The cluster increments this every time the configuration or status is updated (usually by the cluster) and resets it to 0 when epoch changes.
						

						
	
						
							validate-with
						

							
						
							 Determines the type of XML validation that will be done on the configuration. If set to none, the cluster will not verify that updates conform to the DTD (nor reject ones that don’t). This option can be useful when operating a mixed-version cluster during an upgrade.
						

						
	
						
							cib-last-written
						

							
						
							 Indicates when the configuration was last written to disk. Maintained by the cluster; for informational purposes only.
						

						
	
						
							have-quorum
						

							
						
							 Indicates if the cluster has quorum. If false, this may mean that the cluster cannot start resources or fence other nodes (see no-quorum-policy below). Maintained by the cluster.
						

						
	
						
							dc-uuid
						

							
						
							 Indicates which cluster node is the current leader. Used by the cluster when placing resources and determining the order of some events. Maintained by the cluster.
						

						

 ⁠2.3. Cluster Options

			Cluster options, as you might expect, control how the cluster behaves when confronted with certain situations.
		

			They are grouped into sets within the crm_config section, and, in advanced configurations, there may be more than one set. (This will be described later in the section on Chapter 8, Rules where we will show how to have the cluster use different sets of options during working hours than during weekends.) For now, we will describe the simple case where each option is present at most once.
		

			You can obtain an up-to-date list of cluster options, including their default values, by running the man pacemaker-schedulerd and man pacemaker-controld commands.
		

 ⁠Table 2.2. Cluster Options
	Option 	Default 	Description
	
						
							cluster-name
						

							
						
						

							
						
							 An (optional) name for the cluster as a whole. This is mostly for users' convenience for use as desired in administration, but this can be used in the Pacemaker configuration in rules (as the #cluster-name node attribute). It may also be used by higher-level tools when displaying cluster information, and by certain resource agents (for example, the ocf:heartbeat:GFS2 agent stores the cluster name in filesystem meta-data).
						

						
	
						
							dc-version
						

							
						
						

							
						
							 Version of Pacemaker on the cluster’s DC. Determined automatically by the cluster. Often includes the hash which identifies the exact Git changeset it was built from. Used for diagnostic purposes.
						

						
	
						
							cluster-infrastructure
						

							
						
						

							
						
							 The messaging stack on which Pacemaker is currently running. Determined automatically by the cluster. Used for informational and diagnostic purposes.
						

						
	
						
							no-quorum-policy
						

							
						
							stop
						

							
						
							 What to do when the cluster does not have quorum. Allowed values:
						

							
									ignore: continue all resource management
								

	
									freeze: continue resource management, but don’t recover resources from nodes not in the affected partition
								

	
									stop: stop all resources in the affected cluster partition
								

	
									demote: demote promotable resources and stop all other resources in the affected cluster partition
								

	
									suicide: fence all nodes in the affected cluster partition
								

						
	
						
							batch-limit
						

							
						
							0
						

							
						
							 The maximum number of actions that the cluster may execute in parallel across all nodes. The "correct" value will depend on the speed and load of your network and cluster nodes. If zero, the cluster will impose a dynamically calculated limit only when any node has high load.
						

						
	
						
							migration-limit
						

							
						
							-1
						

							
						
							 The number of live migration actions that the cluster is allowed to execute in parallel on a node. A value of -1 means unlimited.
						

						
	
						
							symmetric-cluster
						

							
						
							TRUE
						

							
						
							 Can all resources run on any node by default?
						

						
	
						
							stop-all-resources
						

							
						
							FALSE
						

							
						
							 Should the cluster stop all resources?
						

						
	
						
							stop-orphan-resources
						

							
						
							TRUE
						

							
						
							 Should deleted resources be stopped? This value takes precedence over is-managed (i.e. even unmanaged resources will be stopped if deleted from the configuration when this value is TRUE).
						

						
	
						
							stop-orphan-actions
						

							
						
							TRUE
						

							
						
							 Should deleted actions be cancelled?
						

						
	
						
							start-failure-is-fatal
						

							
						
							TRUE
						

							
						
							 Should a failure to start a resource on a particular node prevent further start attempts on that node? If FALSE, the cluster will decide whether the same node is still eligible based on the resource’s current failure count and migration-threshold (see Section 9.2, “Handling Resource Failure”).
						

						
	
						
							enable-startup-probes
						

							
						
							TRUE
						

							
						
							 Should the cluster check for active resources during startup?
						

						
	
						
							maintenance-mode
						

							
						
							FALSE
						

							
						
							 Should the cluster refrain from monitoring, starting and stopping resources?
						

						
	
						
							stonith-enabled
						

							
						
							TRUE
						

							
						
							 Should failed nodes and nodes with resources that can’t be stopped be shot? If you value your data, set up a STONITH device and enable this.
						

						
							If true, or unset, the cluster will refuse to start resources unless one or more STONITH resources have been configured. If false, unresponsive nodes are immediately assumed to be running no resources, and resource takeover to online nodes starts without any further protection (which means data loss if the unresponsive node still accesses shared storage, for example). See also the requires meta-attribute in Section 4.4, “Resource Options”.
						

						
	
						
							stonith-action
						

							
						
							reboot
						

							
						
							 Action to send to STONITH device. Allowed values are reboot and off. The value poweroff is also allowed, but is only used for legacy devices.
						

						
	
						
							stonith-timeout
						

							
						
							60s
						

							
						
							 How long to wait for STONITH actions (reboot, on, off) to complete
						

						
	
						
							stonith-max-attempts
						

							
						
							10
						

							
						
							 How many times fencing can fail for a target before the cluster will no longer immediately re-attempt it.
						

						
	
						
							stonith-watchdog-timeout
						

							
						
							0
						

							
						
							 If nonzero, along with have-watchdog=true automatically set by the cluster, when fencing is required, watchdog-based self-fencing will be performed via SBD without requiring a fencing resource explicitly configured. If stonith-watchdog-timeout is set to a positive value, unseen nodes are assumed to self-fence within this much time. WARNING: It must be ensured that this value is larger than the SBD_WATCHDOG_TIMEOUT environment variable on all nodes. Pacemaker verifies the settings individually on all nodes and prevents startup or shuts down if configured wrongly on the fly. It’s strongly recommended that SBD_WATCHDOG_TIMEOUT is set to the same value on all nodes. If stonith-watchdog-timeout is set to a negative value, and SBD_WATCHDOG_TIMEOUT is set, twice that value will be used. WARNING: In this case, it’s essential (currently not verified by pacemaker) that SBD_WATCHDOG_TIMEOUT is set to the same value on all nodes.
						

						
	
						
							concurrent-fencing
						

							
						
							FALSE
						

							
						
							 Is the cluster allowed to initiate multiple fence actions concurrently?
						

						
	
						
							fence-reaction
						

							
						
							stop
						

							
						
							 How should a cluster node react if notified of its own fencing? A cluster node may receive notification of its own fencing if fencing is misconfigured, or if fabric fencing is in use that doesn’t cut cluster communication. Allowed values are stop to attempt to immediately stop pacemaker and stay stopped, or panic to attempt to immediately reboot the local node, falling back to stop on failure. The default is likely to be changed to panic in a future release. (since 2.0.3)
						

						
	
						
							priority-fencing-delay
						

							
						
							0
						

							
						
							 Apply specified delay for the fencings that are targeting the lost nodes with the highest total resource priority in case we don’t have the majority of the nodes in our cluster partition, so that the more significant nodes potentially win any fencing match, which is especially meaningful under split-brain of 2-node cluster. A promoted resource instance takes the base priority + 1 on calculation if the base priority is not 0. Any static/random delays that are introduced by pcmk_delay_base/max configured for the corresponding fencing resources will be added to this delay. This delay should be significantly greater than, safely twice, the maximum pcmk_delay_base/max. By default, priority fencing delay is disabled. (since 2.0.4)
						

						
	
						
							cluster-delay
						

							
						
							60s
						

							
						
							 Estimated maximum round-trip delay over the network (excluding action execution). If the DC requires an action to be executed on another node, it will consider the action failed if it does not get a response from the other node in this time (after considering the action’s own timeout). The "correct" value will depend on the speed and load of your network and cluster nodes.
						

						
	
						
							dc-deadtime
						

							
						
							20s
						

							
						
							 How long to wait for a response from other nodes during startup.
						

						
							The "correct" value will depend on the speed/load of your network and the type of switches used.
						

						
	
						
							cluster-ipc-limit
						

							
						
							500
						

							
						
							 The maximum IPC message backlog before one cluster daemon will disconnect another. This is of use in large clusters, for which a good value is the number of resources in the cluster multiplied by the number of nodes. The default of 500 is also the minimum. Raise this if you see "Evicting client" messages for cluster daemon PIDs in the logs.
						

						
	
						
							pe-error-series-max
						

							
						
							-1
						

							
						
							 The number of PE inputs resulting in ERRORs to save. Used when reporting problems. A value of -1 means unlimited (report all).
						

						
	
						
							pe-warn-series-max
						

							
						
							-1
						

							
						
							 The number of PE inputs resulting in WARNINGs to save. Used when reporting problems. A value of -1 means unlimited (report all).
						

						
	
						
							pe-input-series-max
						

							
						
							-1
						

							
						
							 The number of "normal" PE inputs to save. Used when reporting problems. A value of -1 means unlimited (report all).
						

						
	
						
							placement-strategy
						

							
						
							default
						

							
						
							 How the cluster should allocate resources to nodes (see Chapter 12, Utilization and Placement Strategy). Allowed values are default, utilization, balanced, and minimal.
						

						
	
						
							node-health-strategy
						

							
						
							none
						

							
						
							 How the cluster should react to node health attributes (see Section 9.4, “Tracking Node Health”). Allowed values are none, migrate-on-red, only-green, progressive, and custom.
						

						
	
						
							enable-acl
						

							
						
							FALSE
						

							
						
							 Whether access control lists (ACLs) (see Chapter 13, ACLs) can be used to authorize modifications to the CIB.
						

						
	
						
							node-health-base
						

							
						
							0
						

							
						
							 The base health score assigned to a node. Only used when node-health-strategy is progressive.
						

						
	
						
							node-health-green
						

							
						
							0
						

							
						
							 The score to use for a node health attribute whose value is green. Only used when node-health-strategy is progressive or custom.
						

						
	
						
							node-health-yellow
						

							
						
							0
						

							
						
							 The score to use for a node health attribute whose value is yellow. Only used when node-health-strategy is progressive or custom.
						

						
	
						
							node-health-red
						

							
						
							0
						

							
						
							 The score to use for a node health attribute whose value is red. Only used when node-health-strategy is progressive or custom.
						

						
	
						
							cluster-recheck-interval
						

							
						
							15min
						

							
						
							 Pacemaker is primarily event-driven, and looks ahead to know when to recheck the cluster for failure timeouts and most time-based rules. However, it will also recheck the cluster after this amount of inactivity. This has two goals: rules with date_spec are only guaranteed to be checked this often, and it also serves as a fail-safe for certain classes of scheduler bugs. A value of 0 disables this polling; positive values are a time interval.
						

						
	
						
							shutdown-lock
						

							
						
							false
						

							
						
							The default of false allows active resources to be recovered elsewhere when their node is cleanly shut down, which is what the vast majority of users will want. However, some users prefer to make resources highly available only for failures, with no recovery for clean shutdowns. If this option is true, resources active on a node when it is cleanly shut down are kept "locked" to that node (not allowed to run elsewhere) until they start again on that node after it rejoins (or for at most shutdown-lock-limit, if set). Stonith resources and Pacemaker Remote connections are never locked. Clone and bundle instances and the master role of promotable clones are currently never locked, though support could be added in a future release. Locks may be manually cleared using the --refresh option of crm_resource (both the resource and node must be specified; this works with remote nodes if their connection resource’s target-role is set to Stopped, but not if Pacemaker Remote is stopped on the remote node without disabling the connection resource). (since 2.0.4)
						

						
	
						
							shutdown-lock-limit
						

							
						
							0
						

							
						
							If shutdown-lock is true, and this is set to a nonzero time duration, locked resources will be allowed to start after this much time has passed since the node shutdown was initiated, even if the node has not rejoined. (This works with remote nodes only if their connection resource’s target-role is set to Stopped.) (since 2.0.4)
						

						
	
						
							remove-after-stop
						

							
						
							FALSE
						

							
						
							Advanced Use Only: Should the cluster remove resources from the LRM after they are stopped? Values other than the default are, at best, poorly tested and potentially dangerous.
						

						
	
						
							startup-fencing
						

							
						
							TRUE
						

							
						
							Advanced Use Only: Should the cluster shoot unseen nodes? Not using the default is very unsafe!
						

						
	
						
							election-timeout
						

							
						
							2min
						

							
						
							Advanced Use Only: If you need to adjust this value, it probably indicates the presence of a bug.
						

						
	
						
							shutdown-escalation
						

							
						
							20min
						

							
						
							Advanced Use Only: If you need to adjust this value, it probably indicates the presence of a bug.
						

						
	
						
							join-integration-timeout
						

							
						
							3min
						

							
						
							Advanced Use Only: If you need to adjust this value, it probably indicates the presence of a bug.
						

						
	
						
							join-finalization-timeout
						

							
						
							30min
						

							
						
							Advanced Use Only: If you need to adjust this value, it probably indicates the presence of a bug.
						

						
	
						
							transition-delay
						

							
						
							0s
						

							
						
							Advanced Use Only: Delay cluster recovery for the configured interval to allow for additional/related events to occur. Useful if your configuration is sensitive to the order in which ping updates arrive. Enabling this option will slow down cluster recovery under all conditions.
						

						

 ⁠Chapter 3. Cluster Nodes

 ⁠3.1. Defining a Cluster Node

			Each node in the cluster will have an entry in the nodes section containing its UUID, uname, and type.
		

 ⁠Example 3.1. Example Corosync cluster node entry
​<node id="101" uname="pcmk-1"/>

			In normal circumstances, the admin should let the cluster populate this information automatically from the communications and membership data.
		

 ⁠3.2. Where Pacemaker Gets the Node Name

			Traditionally, Pacemaker required nodes to be referred to by the value returned by uname -n. This can be problematic for services that require the uname -n to be a specific value (e.g. for a licence file).
		

			This requirement has been relaxed for clusters using Corosync 2.0 or later. The name Pacemaker uses is:
		
	
					The value stored in corosync.conf under ring0_addr in the nodelist, if it does not contain an IP address; otherwise
				

	
					The value stored in corosync.conf under name in the nodelist; otherwise
				

	
					The value of uname -n
				

			Pacemaker provides the crm_node -n command which displays the name used by a running cluster.
		

			If a Corosync nodelist is used, crm_node --name-for-id number is also available to display the name used by the node with the corosync nodeid of number, for example: crm_node --name-for-id 2.
		

 ⁠3.3. Node Attributes

			 Pacemaker allows node-specific values to be specified using node attributes. A node attribute has a name, and may have a distinct value for each node.
		

			While certain node attributes have specific meanings to the cluster, they are mainly intended to allow administrators and resource agents to track any information desired.
		

			For example, an administrator might choose to define node attributes for how much RAM and disk space each node has, which OS each uses, or which server room rack each node is in.
		

			Users can configure rules that use node attributes to affect where resources are placed.
		

 ⁠3.3.1. Setting and querying node attributes

				Node attributes can be set and queried using the crm_attribute and attrd_updater commands, so that the user does not have to deal with XML configuration directly.
			

				Here is an example of what XML configuration would be generated if an administrator ran this command:
			

 ⁠Example 3.2. Result of using crm_attribute to specify which kernel pcmk-1 is running
crm_attribute --type nodes --node pcmk-1 --name kernel --update $(uname -r)
​<node id="1" uname="pcmk-1">
​ <instance_attributes id="nodes-1-attributes">
​ <nvpair id="nodes-1-kernel" name="kernel" value="3.10.0-862.14.4.el7.x86_64"/>
​ </instance_attributes>
​</node>

				To read back the value that was just set:
			
crm_attribute --type nodes --node pcmk-1 --name kernel --query
scope=nodes name=kernel value=3.10.0-862.14.4.el7.x86_64

				By specifying --type nodes the admin tells the cluster that this attribute is persistent across reboots. There are also transient attributes which are kept in the status section and are "forgotten" whenever the node leaves the cluster. Administrators can use this section by specifying --type status.
			

 ⁠3.3.2. Special node attributes

				Certain node attributes have special meaning to the cluster.
			

				Node attribute names beginning with # are considered reserved for these special attributes. Some special attributes do not start with #, for historical reasons.
			

				Certain special attributes are set automatically by the cluster, should never be modified directly, and can be used only within rules; these are listed under Section 8.2, “Node Attribute Expressions”.
			

				For true/false values, the cluster considers a value of "1", "y", "yes", "on", or "true" (case-insensitively) to be true, "0", "n", "no", "off", "false", or unset to be false, and anything else to be an error.
			

 ⁠Table 3.1. Node attributes with special significance
	Name 	Description
	
							
								fail-count-*
							

								
							
								Attributes whose names start with fail-count- are managed by the cluster to track how many times particular resource operations have failed on this node. These should be queried and cleared via the crm_failcount or crm_resource --cleanup commands rather than directly.
							

							
	
							
								last-failure-*
							

								
							
								Attributes whose names start with last-failure- are managed by the cluster to track when particular resource operations have most recently failed on this node. These should be cleared via the crm_failcount or crm_resource --cleanup commands rather than directly.
							

							
	
							
								maintenance
							

								
							
								Similar to the maintenance-mode cluster option, but for a single node. If true, resources will not be started or stopped on the node, resources and individual clone instances running on the node will become unmanaged, and any recurring operations for those will be cancelled.
							

							
	
							
								probe_complete
							

								
							
								This is managed by the cluster to detect when nodes need to be reprobed, and should never be used directly.
							

							
	
							
								resource-discovery-enabled
							

								
							
								If the node is a remote node, fencing is enabled, and this attribute is explicitly set to false (unset means true in this case), resource discovery (probes) will not be done on this node. This is highly discouraged; the resource-discovery location constraint property is preferred for this purpose.
							

							
	
							
								shutdown
							

								
							
								This is managed by the cluster to orchestrate the shutdown of a node, and should never be used directly.
							

							
	
							
								site-name
							

								
							
								If set, this will be used as the value of the #site-name node attribute used in rules. (If not set, the value of the cluster-name cluster option will be used as #site-name instead.)
							

							
	
							
								standby
							

								
							
								If true, the node is in standby mode. This is typically set and queried via the crm_standby command rather than directly.
							

							
	
							
								terminate
							

								
							
								If the value is true or begins with any nonzero number, the node will be fenced. This is typically set by tools rather than directly.
							

							
	
							
								#digests-*
							

								
							
								Attributes whose names start with #digests- are managed by the cluster to detect when unfencing needs to be redone, and should never be used directly.
							

							
	
							
								#node-unfenced
							

								
							
								When the node was last unfenced (as seconds since the epoch). This is managed by the cluster and should never be used directly.
							

							

Warning

					Restarting pacemaker on a node that is in single-node maintenance mode will likely lead to undesirable effects. If maintenance is set as a transient attribute, it will be erased when pacemaker is stopped, which will immediately take the node out of maintenance mode and likely get it fenced. Even if permanent, if pacemaker is restarted, any resources active on the node will have their local history erased when the node rejoins, so the cluster will no longer consider them running on the node and thus will consider them managed again, leading them to be started elsewhere. This behavior might be improved in a future release.
				

 ⁠Chapter 4. Cluster Resources

 ⁠4.1. What is a Cluster Resource?

			
		

			A resource is a service made highly available by a cluster. The simplest type of resource, a primitive resource, is described in this section. More complex forms, such as groups and clones, are described in later sections.
		

			Every primitive resource has a resource agent. A resource agent is an external program that abstracts the service it provides and present a consistent view to the cluster.
		

			This allows the cluster to be agnostic about the resources it manages. The cluster doesn’t need to understand how the resource works because it relies on the resource agent to do the right thing when given a start, stop or monitor command. For this reason, it is crucial that resource agents are well-tested.
		

			Typically, resource agents come in the form of shell scripts. However, they can be written using any technology (such as C, Python or Perl) that the author is comfortable with.
		

 ⁠4.2. Resource Classes

			
		

			Pacemaker supports several classes of agents:
		
	
					OCF
				

	
					LSB
				

	
					Upstart
				

	
					Systemd
				

	
					Service
				

	
					Fencing
				

	
					Nagios Plugins
				

 ⁠4.2.1. Open Cluster Framework

				
			

				The OCF standard
 ⁠[5] is basically an extension of the Linux Standard Base conventions for init scripts to:
			
	
						support parameters,
					

	
						make them self-describing, and
					

	
						make them extensible
					

				OCF specs have strict definitions of the exit codes that actions must return.
 ⁠[6]
			

				The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish a completely stopped resource from one which is in some erroneous and indeterminate state.
			

				Parameters are passed to the resource agent as environment variables, with the special prefix OCF_RESKEY_. So, a parameter which the user thinks of as ip will be passed to the resource agent as OCF_RESKEY_ip. The number and purpose of the parameters is left to the resource agent; however, the resource agent should use the meta-data command to advertise any that it supports.
			

				The OCF class is the most preferred as it is an industry standard, highly flexible (allowing parameters to be passed to agents in a non-positional manner) and self-describing.
			

				For more information, see the reference and the Resource Agents section of Pacemaker Administration.
			

 ⁠4.2.2. Linux Standard Base

				
			

				LSB resource agents are more commonly known as init scripts. If a full path is not given, they are assumed to be located in /etc/init.d.
			

				Commonly, they are provided by the OS distribution. In order to be used with a Pacemaker cluster, they must conform to the LSB specification.
 ⁠[7]
			
Warning

					Many distributions or particular software packages claim LSB compliance but ship with broken init scripts. For details on how to check whether your init script is LSB-compatible, see the Resource Agents section of Pacemaker Administration. Common problematic violations of the LSB standard include:
				
	
							Not implementing the status operation at all
						

	
							Not observing the correct exit status codes for start/stop/status actions
						

	
							Starting a started resource returns an error
						

	
							Stopping a stopped resource returns an error
						

Important

					Remember to make sure the computer is not configured to start any services at boot time — that should be controlled by the cluster.
				

 ⁠4.2.3. Systemd

				
			

				Some newer distributions have replaced the old "SysV" style of initialization daemons and scripts with an alternative called Systemd.
			

				Pacemaker is able to manage these services if they are present.
			

				Instead of init scripts, systemd has unit files. Generally, the services (unit files) are provided by the OS distribution, but there are online guides for converting from init scripts.
 ⁠[8]
			
Important

					Remember to make sure the computer is not configured to start any services at boot time — that should be controlled by the cluster.
				

 ⁠4.2.4. Upstart

				
			

				Some newer distributions have replaced the old "SysV" style of initialization daemons (and scripts) with an alternative called Upstart.
			

				Pacemaker is able to manage these services if they are present.
			

				Instead of init scripts, upstart has jobs. Generally, the services (jobs) are provided by the OS distribution.
			
Important

					Remember to make sure the computer is not configured to start any services at boot time — that should be controlled by the cluster.
				

 ⁠4.2.5. System Services

				
			

				Since there are various types of system services (systemd, upstart, and lsb), Pacemaker supports a special service alias which intelligently figures out which one applies to a given cluster node.
			

				This is particularly useful when the cluster contains a mix of systemd, upstart, and lsb.
			

				In order, Pacemaker will try to find the named service as:
			
	
						an LSB init script
					

	
						a Systemd unit file
					

	
						an Upstart job
					

 ⁠4.2.6. STONITH

				
			

				The STONITH class is used exclusively for fencing-related resources. This is discussed later in Chapter 6, Fencing.
			

 ⁠4.2.7. Nagios Plugins

				
			

				Nagios Plugins
 ⁠[9] allow us to monitor services on remote hosts.
			

				Pacemaker is able to do remote monitoring with the plugins if they are present.
			

				A common use case is to configure them as resources belonging to a resource container (usually a virtual machine), and the container will be restarted if any of them has failed. Another use is to configure them as ordinary resources to be used for monitoring hosts or services via the network.
			

				The supported parameters are same as the long options of the plugin.
			

 ⁠4.3. Resource Properties

			These values tell the cluster which resource agent to use for the resource, where to find that resource agent and what standards it conforms to.
		

 ⁠Table 4.1. Properties of a Primitive Resource
	Field	Description
	
						
							id
						

							
						
							Your name for the resource
						

						
	
						
							class
						

							
						
							The standard the resource agent conforms to. Allowed values: lsb, nagios, ocf, service, stonith, systemd, upstart
						

						
	
						
							type
						

							
						
							The name of the Resource Agent you wish to use. E.g. IPaddr or Filesystem
						

						
	
						
							provider
						

							
						
							The OCF spec allows multiple vendors to supply the same resource agent. To use the OCF resource agents supplied by the Heartbeat project, you would specify heartbeat here.
						

						

			The XML definition of a resource can be queried with the crm_resource tool. For example:
		
crm_resource --resource Email --query-xml

			might produce:
		

 ⁠Example 4.1. A system resource definition
​<primitive id="Email" class="service" type="exim"/>

Note

				One of the main drawbacks to system services (LSB, systemd or Upstart) resources is that they do not allow any parameters!
			

 ⁠Example 4.2. An OCF resource definition
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <instance_attributes id="Public-IP-params">
​ <nvpair id="Public-IP-ip" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

 ⁠4.4. Resource Options

			Resources have two types of options: meta-attributes and instance attributes. Meta-attributes apply to any type of resource, while instance attributes are specific to each resource agent.
		

 ⁠4.4.1. Resource Meta-Attributes

				Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set using the --meta option of the crm_resource command.
			

 ⁠Table 4.2. Meta-attributes of a Primitive Resource
	Field	Default	Description
	
							
								priority
							

								
							
								0
							

								
							
								If not all resources can be active, the cluster will stop lower priority resources in order to keep higher priority ones active.
							

							
	
							
								target-role
							

								
							
								Started
							

								
							
								What state should the cluster attempt to keep this resource in? Allowed values:
							

								
										Stopped: Force the resource to be stopped
									

	
										Started: Allow the resource to be started (and in the case of promotable clone resources, promoted to master if appropriate)
									

	
										Slave: Allow the resource to be started, but only in Slave mode if the resource is promotable
									

	
										Master: Equivalent to Started
									

							
	
							
								is-managed
							

								
							
								TRUE
							

								
							
								Is the cluster allowed to start and stop the resource? Allowed values: true, false
							

							
	
							
								maintenance
							

								
							
								FALSE
							

								
							
								Similar to the maintenance-mode cluster option, but for a single resource. If true, the resource will not be started, stopped, or monitored on any node. This differs from is-managed in that monitors will not be run. Allowed values: true, false
							

							
	
							
								resource-stickiness
							

								
							
								1 for individual clone instances, 0 for all other resources
							

								
							
								A score that will be added to the current node when a resource is already active. This allows running resources to stay where they are, even if they would be placed elsewhere if they were being started from a stopped state.
							

							
	
							
								requires
							

								
							
								quorum for resources with a class of stonith, otherwise unfencing if unfencing is active in the cluster, otherwise fencing if stonith-enabled is true, otherwise quorum
							

								
							
								Conditions under which the resource can be started Allowed values:
							

								
										nothing: can always be started
									

	
										quorum: The cluster can only start this resource if a majority of the configured nodes are active
									

	
										fencing: The cluster can only start this resource if a majority of the configured nodes are active and any failed or unknown nodes have been fenced
									

	
										unfencing: The cluster can only start this resource if a majority of the configured nodes are active and any failed or unknown nodes have been fenced and only on nodes that have been unfenced
									

							
								
							

							
	
							
								migration-threshold
							

								
							
								INFINITY
							

								
							
								How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by constrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation specifies on-fail as restart (the default), and additionally for failed start operations, if the cluster property start-failure-is-fatal is false.
							

							
	
							
								failure-timeout
							

								
							
								0
							

								
							
								How many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. A value of 0 indicates that this feature is disabled.
							

							
	
							
								multiple-active
							

								
							
								stop_start
							

								
							
								What should the cluster do if it ever finds the resource active on more than one node? Allowed values:
							

								
										block: mark the resource as unmanaged
									

	
										stop_only: stop all active instances and leave them that way
									

	
										stop_start: stop all active instances and start the resource in one location only
									

							
								
							

							
	
							
								allow-migrate
							

								
							
								TRUE for ocf:pacemaker:remote resources, FALSE otherwise
							

								
							
								Whether the cluster should try to "live migrate" this resource when it needs to be moved (see Section 9.3.3, “Migrating Resources”)
							

							
	
							
								container-attribute-target
							

								
							
							

								
							
								Specific to bundle resources; see Section 10.3.7, “Bundle Node Attributes”
							

							
	
							
								remote-node
							

								
							
							

								
							
								The name of the Pacemaker Remote guest node this resource is associated with, if any. If specified, this both enables the resource as a guest node and defines the unique name used to identify the guest node. The guest must be configured to run the Pacemaker Remote daemon when it is started. WARNING: This value cannot overlap with any resource or node IDs.
							

							
	
							
								remote-port
							

								
							
								3121
							

								
							
								If remote-node is specified, the port on the guest used for its Pacemaker Remote connection. The Pacemaker Remote daemon on the guest must be configured to listen on this port.
							

							
	
							
								remote-addr
							

								
							
								value of remote-node
							

								
							
								If remote-node is specified, the IP address or hostname used to connect to the guest via Pacemaker Remote. The Pacemaker Remote daemon on the guest must be configured to accept connections on this address.
							

							
	
							
								remote-connect-timeout
							

								
							
								60s
							

								
							
								If remote-node is specified, how long before a pending guest connection will time out.
							

							

				As an example of setting resource options, if you performed the following commands on an LSB Email resource:
			
crm_resource --meta --resource Email --set-parameter priority --parameter-value 100
crm_resource -m -r Email -p multiple-active -v block

				the resulting resource definition might be:
			

 ⁠Example 4.3. An LSB resource with cluster options
​<primitive id="Email" class="lsb" type="exim">
​ <meta_attributes id="Email-meta_attributes">
​ <nvpair id="Email-meta_attributes-priority" name="priority" value="100"/>
​ <nvpair id="Email-meta_attributes-multiple-active" name="multiple-active" value="block"/>
​ </meta_attributes>
​</primitive>

				In addition to the cluster-defined meta-attributes described above, you may also configure arbitrary meta-attributes of your own choosing. Most commonly, this would be done for use in rules. For example, an IT department might define a custom meta-attribute to indicate which company department each resource is intended for. To reduce the chance of name collisions with cluster-defined meta-attributes added in the future, it is recommended to use a unique, organization-specific prefix for such attributes.
			

 ⁠4.4.2. Setting Global Defaults for Resource Meta-Attributes

				To set a default value for a resource option, add it to the rsc_defaults section with crm_attribute. For example,
			
crm_attribute --type rsc_defaults --name is-managed --update false

				would prevent the cluster from starting or stopping any of the resources in the configuration (unless of course the individual resources were specifically enabled by having their is-managed set to true).
			

 ⁠4.4.3. Resource Instance Attributes

				The resource agents of some resource classes (lsb, systemd and upstart not among them) can be given parameters which determine how they behave and which instance of a service they control.
			

				If your resource agent supports parameters, you can add them with the crm_resource command. For example,
			
crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2

				would create an entry in the resource like this:
			

 ⁠Example 4.4. An example OCF resource with instance attributes
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

				For an OCF resource, the result would be an environment variable called OCF_RESKEY_ip with a value of 192.0.2.2.
			

				The list of instance attributes supported by an OCF resource agent can be found by calling the resource agent with the meta-data command. The output contains an XML description of all the supported attributes, their purpose and default values.
			

 ⁠Example 4.5. Displaying the metadata for the Dummy resource agent template
export OCF_ROOT=/usr/lib/ocf
$OCF_ROOT/resource.d/pacemaker/Dummy meta-data
​<?xml version="1.0"?>
​<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
​<resource-agent name="Dummy" version="1.0">
​<version>1.0</version>
​
​<longdesc>
​This is a Dummy Resource Agent. It does absolutely nothing except
​keep track of whether its running or not.
​Its purpose in life is for testing and to serve as a template for RA writers.
​
​NB: Please pay attention to the timeouts specified in the actions
​section below. They should be meaningful for the kind of resource
​the agent manages. They should be the minimum advised timeouts,
​but they shouldn't/cannot cover _all_ possible resource
​instances. So, try to be neither overly generous nor too stingy,
​but moderate. The minimum timeouts should never be below 10 seconds.
​</longdesc>
​<shortdesc>Example stateless resource agent</shortdesc>
​
​<parameters>
​<parameter name="state" unique="1">
​<longdesc>
​Location to store the resource state in.
​</longdesc>
​<shortdesc>State file</shortdesc>
​<content type="string" default="/var/run/Dummy-default.state" />
​</parameter>
​
​<parameter name="fake" unique="0">
​<longdesc>
​Fake attribute that can be changed to cause a reload
​</longdesc>
​<shortdesc>Fake attribute that can be changed to cause a reload</shortdesc>
​<content type="string" default="dummy" />
​</parameter>
​
​<parameter name="op_sleep" unique="1">
​<longdesc>
​Number of seconds to sleep during operations. This can be used to test how
​the cluster reacts to operation timeouts.
​</longdesc>
​<shortdesc>Operation sleep duration in seconds.</shortdesc>
​<content type="string" default="0" />
​</parameter>
​
​</parameters>
​
​<actions>
​<action name="start" timeout="20" />
​<action name="stop" timeout="20" />
​<action name="monitor" timeout="20" interval="10" depth="0"/>
​<action name="reload" timeout="20" />
​<action name="migrate_to" timeout="20" />
​<action name="migrate_from" timeout="20" />
​<action name="validate-all" timeout="20" />
​<action name="meta-data" timeout="5" />
​</actions>
​</resource-agent>

 ⁠4.5. Resource Operations

			
		

			Operations are actions the cluster can perform on a resource by calling the resource agent. Resource agents must support certain common operations such as start, stop, and monitor, and may implement any others.
		

			Operations may be explicitly configured for two purposes: to override defaults for options (such as timeout) that the cluster will use whenever it initiates the operation, and to run an operation on a recurring basis (for example, to monitor the resource for failure).
		

 ⁠Example 4.6. An OCF resource with a non-default start timeout
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <operations>
​ <op id="Public-IP-start" name="start" timeout="60s"/>
​ </operations>
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

			Pacemaker identifies operations by a combination of name and interval, so this combination must be unique for each resource. That is, you should not configure two operations for the same resource with the same name and interval.
		

 ⁠4.5.1. Operation Properties

				Operation properties may be specified directly in the op element as XML attributes, or in a separate meta_attributes block as nvpair elements. XML attributes take precedence over nvpair elements if both are specified.
			

 ⁠Table 4.3. Properties of an Operation
	Field	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the operation.
							

							
	
							
								name
							

								
							
							

								
							
								The action to perform. This can be any action supported by the agent; common values include monitor, start, and stop.
							

							
	
							
								interval
							

								
							
								0
							

								
							
								How frequently (in seconds) to perform the operation. A value of 0 means "when needed". A positive value defines a recurring action, which is typically used with monitor.
							

							
	
							
								timeout
							

								
							
							

								
							
								How long to wait before declaring the action has failed
							

							
	
							
								on-fail
							

								
							
								Varies by action:
							

								
										stop: fence if stonith-enabled is true or block otherwise
									

	
										demote: on-fail of the monitor action with role set to Master, if present, enabled, and configured to a value other than demote, or restart otherwise
									

	
										all other actions: restart
									

								
							
								The action to take if this action ever fails. Allowed values:
							

								
										ignore: Pretend the resource did not fail.
									

	
										block: Don’t perform any further operations on the resource.
									

	
										stop: Stop the resource and do not start it elsewhere.
									

	
										demote: Demote the resource, without a full restart. This is valid only for promote actions, and for monitor actions with both a nonzero interval and role set to Master; for any other action, a configuration error will be logged, and the default behavior will be used.
									

	
										restart: Stop the resource and start it again (possibly on a different node).
									

	
										fence: STONITH the node on which the resource failed.
									

	
										standby: Move all resources away from the node on which the resource failed.
									

							
								
							

							
	
							
								enabled
							

								
							
								TRUE
							

								
							
								If false, ignore this operation definition. This is typically used to pause a particular recurring monitor operation; for instance, it can complement the respective resource being unmanaged (is-managed=false), as this alone will not block any configured monitoring. Disabling the operation does not suppress all actions of the given type. Allowed values: true, false.
							

							
	
							
								record-pending
							

								
							
								TRUE
							

								
							
								If true, the intention to perform the operation is recorded so that GUIs and CLI tools can indicate that an operation is in progress. This is best set as an operation default (see Section 4.5.4, “Setting Global Defaults for Operations”). Allowed values: true, false.
							

							
	
							
								role
							

								
							
							

								
							
								Run the operation only on node(s) that the cluster thinks should be in the specified role. This only makes sense for recurring monitor operations. Allowed (case-sensitive) values: Stopped, Started, and in the case of promotable clone resources, Slave and Master.
							

							

Note

					When on-fail is set to demote, recovery from failure by a successful demote causes the cluster to recalculate whether and where a new instance should be promoted. The node with the failure is eligible, so if master scores have not changed, it will be promoted again.
				

					There is no direct equivalent of migration-threshold for the master role, but the same effect can be achieved with a location constraint using a rule with a node attribute expression for the resource’s fail count.
				

					For example, to immediately ban the master role from a node with any failed promote or master monitor:
				
​<rsc_location id="loc1" rsc="my_primitive">
​ <rule id="rule1" score="-INFINITY" role="Master" boolean-op="or">
​ <expression id="expr1" attribute="fail-count-my_primitive#promote_0"
​ operation="gte" value="1"/>
​ <expression id="expr2" attribute="fail-count-my_primitive#monitor_10000"
​ operation="gte" value="1"/>
​ </rule>
​</rsc_location>

					This example assumes that there is a promotable clone of the my_primitive resource (note that the primitive name, not the clone name, is used in the rule), and that there is a recurring 10-second-interval monitor configured for the master role (fail count attributes specify the interval in milliseconds).
				

 ⁠4.5.2. Monitoring Resources for Failure

				When Pacemaker first starts a resource, it runs one-time monitor operations (referred to as probes) to ensure the resource is running where it’s supposed to be, and not running where it’s not supposed to be. (This behavior can be affected by the resource-discovery location constraint property.)
			

				Other than those initial probes, Pacemaker will not (by default) check that the resource continues to stay healthy.
 ⁠[10] You must configure monitor operations explicitly to perform these checks.
			

 ⁠Example 4.7. An OCF resource with a recurring health check
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <operations>
​ <op id="Public-IP-start" name="start" timeout="60s"/>
​ <op id="Public-IP-monitor" name="monitor" interval="60s"/>
​ </operations>
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

				By default, a monitor operation will ensure that the resource is running where it is supposed to. The target-role property can be used for further checking.
			

				For example, if a resource has one monitor operation with interval=10 role=Started and a second monitor operation with interval=11 role=Stopped, the cluster will run the first monitor on any nodes it thinks should be running the resource, and the second monitor on any nodes that it thinks should not be running the resource (for the truly paranoid, who want to know when an administrator manually starts a service by mistake).
			
Note

					Currently, monitors with role=Stopped are not implemented for clone resources.
				

 ⁠4.5.3. Monitoring Resources When Administration is Disabled

				Recurring monitor operations behave differently under various administrative settings:
			
	
						When a resource is unmanaged (by setting is-managed=false): No monitors will be stopped.
					

						If the unmanaged resource is stopped on a node where the cluster thinks it should be running, the cluster will detect and report that it is not, but it will not consider the monitor failed, and will not try to start the resource until it is managed again.
					

						Starting the unmanaged resource on a different node is strongly discouraged and will at least cause the cluster to consider the resource failed, and may require the resource’s target-role to be set to Stopped then Started to be recovered.
					

	
						When a node is put into standby: All resources will be moved away from the node, and all monitor operations will be stopped on the node, except those specifying role as Stopped (which will be newly initiated if appropriate).
					

	
						When the cluster is put into maintenance mode: All resources will be marked as unmanaged. All monitor operations will be stopped, except those specifying role as Stopped (which will be newly initiated if appropriate). As with single unmanaged resources, starting a resource on a node other than where the cluster expects it to be will cause problems.
					

 ⁠4.5.4. Setting Global Defaults for Operations

				You can change the global default values for operation properties in a given cluster. These are defined in an op_defaults section of the CIB’s configuration section, and can be set with crm_attribute. For example,
			
crm_attribute --type op_defaults --name timeout --update 20s

				would default each operation’s timeout to 20 seconds. If an operation’s definition also includes a value for timeout, then that value would be used for that operation instead.
			

 ⁠4.5.5. When Implicit Operations Take a Long Time

				The cluster will always perform a number of implicit operations: start, stop and a non-recurring monitor operation used at startup to check whether the resource is already active. If one of these is taking too long, then you can create an entry for them and specify a longer timeout.
			

 ⁠Example 4.8. An OCF resource with custom timeouts for its implicit actions
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <operations>
​ <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
​ <op id="public-ip-start" name="start" interval="0" timeout="180s"/>
​ <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>
​ </operations>
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

 ⁠4.5.6. Multiple Monitor Operations

				Provided no two operations (for a single resource) have the same name and interval, you can have as many monitor operations as you like. In this way, you can do a superficial health check every minute and progressively more intense ones at higher intervals.
			

				To tell the resource agent what kind of check to perform, you need to provide each monitor with a different value for a common parameter. The OCF standard creates a special parameter called OCF_CHECK_LEVEL for this purpose and dictates that it is "made available to the resource agent without the normal OCF_RESKEY prefix".
			

				Whatever name you choose, you can specify it by adding an instance_attributes block to the op tag. It is up to each resource agent to look for the parameter and decide how to use it.
			

 ⁠Example 4.9. An OCF resource with two recurring health checks, performing different levels of checks specified via OCF_CHECK_LEVEL.
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <operations>
​ <op id="public-ip-health-60" name="monitor" interval="60">
​ <instance_attributes id="params-public-ip-depth-60">
​ <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
​ </instance_attributes>
​ </op>
​ <op id="public-ip-health-300" name="monitor" interval="300">
​ <instance_attributes id="params-public-ip-depth-300">
​ <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>
​ </instance_attributes>
​ </op>
​ </operations>
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-level" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

 ⁠4.5.7. Disabling a Monitor Operation

				The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you only want to disable it temporarily. In such cases, simply add enabled=false to the operation’s definition.
			

 ⁠Example 4.10. Example of an OCF resource with a disabled health check
​<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <operations>
​ <op id="public-ip-check" name="monitor" interval="60s" enabled="false"/>
​ </operations>
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​</primitive>

				This can be achieved from the command line by executing:
			
cibadmin --modify --xml-text '<op id="public-ip-check" enabled="false"/>'

				Once you’ve done whatever you needed to do, you can then re-enable it with
			
cibadmin --modify --xml-text '<op id="public-ip-check" enabled="true"/>'

[5]
					See https://github.com/ClusterLabs/OCF-spec/tree/master/ra . The Pacemaker implementation has been somewhat extended from the OCF specs.
				

[6]
					The resource-agents source code includes the ocf-tester script, which can be useful in this regard.
				

[7]
					See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it relates to init scripts.
				

[8]
					For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html
				

[9]
					The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.
				

[10]
					Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.
				

 ⁠Chapter 5. Resource Constraints

		
 ⁠
	

 ⁠5.1. Scores

			 Scores of all kinds are integral to how the cluster works. Practically everything from moving a resource to deciding which resource to stop in a degraded cluster is achieved by manipulating scores in some way.
		

			Scores are calculated per resource and node. Any node with a negative score for a resource can’t run that resource. The cluster places a resource on the node with the highest score for it.
		

 ⁠5.1.1. Infinity Math

				Pacemaker implements INFINITY (or equivalently, +INFINITY) internally as a score of 1,000,000. Addition and subtraction with it follow these three basic rules:
			
	
						Any value + INFINITY = INFINITY
					

	
						Any value - INFINITY = -INFINITY
					

	
						INFINITY - INFINITY = -INFINITY
					

Note

					What if you want to use a score higher than 1,000,000? Typically this possibility arises when someone wants to base the score on some external metric that might go above 1,000,000.
				

					The short answer is you can’t.
				

					The long answer is it is sometimes possible work around this limitation creatively. You may be able to set the score to some computed value based on the external metric rather than use the metric directly. For nodes, you can store the metric as a node attribute, and query the attribute when computing the score (possibly as part of a custom resource agent).
				

 ⁠5.2. Deciding Which Nodes a Resource Can Run On

			Location constraints tell the cluster which nodes a resource can run on.
		

			There are two alternative strategies. One way is to say that, by default, resources can run anywhere, and then the location constraints specify nodes that are not allowed (an opt-out cluster). The other way is to start with nothing able to run anywhere, and use location constraints to selectively enable allowed nodes (an opt-in cluster).
		

			Whether you should choose opt-in or opt-out depends on your personal preference and the make-up of your cluster. If most of your resources can run on most of the nodes, then an opt-out arrangement is likely to result in a simpler configuration. On the other-hand, if most resources can only run on a small subset of nodes, an opt-in configuration might be simpler.
		

 ⁠5.2.1. Location Properties

				
			

 ⁠Table 5.1. Attributes of a rsc_location Element
	Attribute	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the constraint (required)
							

							
	
							
								rsc
							

								
							
							

								
							
								The name of the resource to which this constraint applies. A location constraint must either have a rsc, have a rsc-pattern, or contain at least one resource set.
							

							
	
							
								rsc-pattern
							

								
							
							

								
							
								A pattern matching the names of resources to which this constraint applies. The syntax is the same as POSIX extended regular expressions, with the addition of an initial ! indicating that resources not matching the pattern are selected. If the regular expression contains submatches, and the constraint is governed by a rule, the submatches can be referenced as %0 through %9 in the rule’s score-attribute or a rule expression’s attribute. A location constraint must either have a rsc, have a rsc-pattern, or contain at least one resource set.
							

							
	
							
								node
							

								
							
							

								
							
								The name of the node to which this constraint applies. A location constraint must either have a node and score, or contain at least one rule.
							

							
	
							
								score
							

								
							
							

								
							
								Positive values indicate a preference for running the affected resource(s) on node — the higher the value, the stronger the preference. Negative values indicate the resource(s) should avoid this node (a value of -INFINITY changes "should" to "must"). A location constraint must either have a node and score, or contain at least one rule.
							

							
	
							
								resource-discovery
							

								
							
								always
							

								
							
								Whether Pacemaker should perform resource discovery (that is, check whether the resource is already running) for this resource on this node. This should normally be left as the default, so that rogue instances of a service can be stopped when they are running where they are not supposed to be. However, there are two situations where disabling resource discovery is a good idea: when a service is not installed on a node, discovery might return an error (properly written OCF agents will not, so this is usually only seen with other agent types); and when Pacemaker Remote is used to scale a cluster to hundreds of nodes, limiting resource discovery to allowed nodes can significantly boost performance.
							

								
										always: Always perform resource discovery for the specified resource on this node.
									

	
										never: Never perform resource discovery for the specified resource on this node. This option should generally be used with a -INFINITY score, although that is not strictly required.
									

	
										exclusive: Perform resource discovery for the specified resource only on this node (and other nodes similarly marked as exclusive). Multiple location constraints using exclusive discovery for the same resource across different nodes creates a subset of nodes resource-discovery is exclusive to. If a resource is marked for exclusive discovery on one or more nodes, that resource is only allowed to be placed within that subset of nodes.
									

							
								
							

							

Warning

					Setting resource-discovery to never or exclusive removes Pacemaker’s ability to detect and stop unwanted instances of a service running where it’s not supposed to be. It is up to the system administrator (you!) to make sure that the service can never be active on nodes without resource-discovery (such as by leaving the relevant software uninstalled).
				

 ⁠5.2.2. Asymmetrical "Opt-In" Clusters

				
			

				To create an opt-in cluster, start by preventing resources from running anywhere by default:
			
crm_attribute --name symmetric-cluster --update false

				Then start enabling nodes. The following fragment says that the web server prefers sles-1, the database prefers sles-2 and both can fail over to sles-3 if their most preferred node fails.
			

 ⁠Example 5.1. Opt-in location constraints for two resources
​<constraints>
​ <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
​ <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
​ <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
​ <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>
​</constraints>

 ⁠5.2.3. Symmetrical "Opt-Out" Clusters

				
			

				To create an opt-out cluster, start by allowing resources to run anywhere by default:
			
crm_attribute --name symmetric-cluster --update true

				Then start disabling nodes. The following fragment is the equivalent of the above opt-in configuration.
			

 ⁠Example 5.2. Opt-out location constraints for two resources
​<constraints>
​ <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
​ <rsc_location id="loc-2-do-not-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>
​ <rsc_location id="loc-3-do-not-run" rsc="Database" node="sles-1" score="-INFINITY"/>
​ <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>
​</constraints>

 ⁠5.2.4. What if Two Nodes Have the Same Score

				If two nodes have the same score, then the cluster will choose one. This choice may seem random and may not be what was intended, however the cluster was not given enough information to know any better.
			

 ⁠Example 5.3. Constraints where a resource prefers two nodes equally
​<constraints>
​ <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
​ <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
​ <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
​ <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
​ <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>
​</constraints>

				In the example above, assuming no other constraints and an inactive cluster, Webserver would probably be placed on sles-1 and Database on sles-2. It would likely have placed Webserver based on the node’s uname and Database based on the desire to spread the resource load evenly across the cluster. However other factors can also be involved in more complex configurations.
			

 ⁠5.3. Specifying the Order in which Resources Should Start/Stop

			
		

			Ordering constraints tell the cluster the order in which certain resource actions should occur.
		
Important

				Ordering constraints affect only the ordering of resource actions; they do not require that the resources be placed on the same node. If you want resources to be started on the same node and in a specific order, you need both an ordering constraint and a colocation constraint (see Section 5.4, “Placing Resources Relative to other Resources”), or alternatively, a group (see Section 10.1, “Groups - A Syntactic Shortcut”).
			

 ⁠5.3.1. Ordering Properties

				
			

 ⁠Table 5.2. Attributes of a rsc_order Element
	Field	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the constraint
							

							
	
							
								first
							

								
							
							

								
							
								Name of the resource that the then resource depends on
							

							
	
							
								then
							

								
							
							

								
							
								Name of the dependent resource
							

							
	
							
								first-action
							

								
							
								start
							

								
							
								The action that the first resource must complete before then-action can be initiated for the then resource. Allowed values: start, stop, promote, demote.
							

							
	
							
								then-action
							

								
							
								value of first-action
							

								
							
								The action that the then resource can execute only after the first-action on the first resource has completed. Allowed values: start, stop, promote, demote.
							

							
	
							
								kind
							

								
							
								Mandatory
							

								
							
								How to enforce the constraint. Allowed values:
							

								
										Mandatory: then-action will never be initiated for the then resource unless and until first-action successfully completes for the first resource.
									

	
										Optional: The constraint applies only if both specified resource actions are scheduled in the same transition (that is, in response to the same cluster state). This means that then-action is allowed on the then resource regardless of the state of the first resource, but if both actions happen to be scheduled at the same time, they will be ordered.
									

	
										Serialize: Ensure that the specified actions are never performed concurrently for the specified resources. First-action and then-action can be executed in either order, but one must complete before the other can be initiated. An example use case is when resource start-up puts a high load on the host.
									

							
								
							

							
	
							
								symmetrical
							

								
							
								TRUE for Mandatory and Optional kinds. FALSE for Serialize kind.
							

								
							
								If true, the reverse of the constraint applies for the opposite action (for example, if B starts after A starts, then B stops before A stops). Serialize orders cannot be symmetrical.
							

							

				Promote and demote apply to the master role of promotable resources.
			

 ⁠5.3.2. Optional and mandatory ordering

				Here is an example of ordering constraints where Database must start before Webserver, and IP should start before Webserver if they both need to be started:
			

 ⁠Example 5.4. Optional and mandatory ordering constraints
​<constraints>
​<rsc_order id="order-1" first="IP" then="Webserver" kind="Optional"/>
​<rsc_order id="order-2" first="Database" then="Webserver" kind="Mandatory" />
​</constraints>

				Because the above example lets symmetrical default to TRUE, Webserver must be stopped before Database can be stopped, and Webserver should be stopped before IP if they both need to be stopped.
			

 ⁠5.4. Placing Resources Relative to other Resources

			Colocation constraints tell the cluster that the location of one resource depends on the location of another one.
		

			Colocation has an important side-effect: it affects the order in which resources are assigned to a node. Think about it: You can’t place A relative to B unless you know where B is.
 ⁠[11]
		

			So when you are creating colocation constraints, it is important to consider whether you should colocate A with B, or B with A.
		

			Another thing to keep in mind is that, assuming A is colocated with B, the cluster will take into account A’s preferences when deciding which node to choose for B.
		

			For a detailed look at exactly how this occurs, see Colocation Explained.
		
Important

				Colocation constraints affect only the placement of resources; they do not require that the resources be started in a particular order. If you want resources to be started on the same node and in a specific order, you need both an ordering constraint (see Section 5.3, “Specifying the Order in which Resources Should Start/Stop”) and a colocation constraint, or alternatively, a group (see Section 10.1, “Groups - A Syntactic Shortcut”).
			

 ⁠5.4.1. Colocation Properties

				
			

 ⁠Table 5.3. Attributes of a rsc_colocation Constraint
	Field	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the constraint (required).
							

							
	
							
								rsc
							

								
							
							

								
							
								The name of a resource that should be located relative to with-rsc (required).
							

							
	
							
								with-rsc
							

								
							
							

								
							
								The name of the resource used as the colocation target. The cluster will decide where to put this resource first and then decide where to put rsc (required).
							

							
	
							
								node-attribute
							

								
							
								#uname
							

								
							
								The node attribute that must be the same on the node running rsc and the node running with-rsc for the constraint to be satisfied. (For details, see Section 5.4.4, “Colocation by Node Attribute”.)
							

							
	
							
								score
							

								
							
							

								
							
								Positive values indicate the resources should run on the same node. Negative values indicate the resources should run on different nodes. Values of +/- INFINITY change "should" to "must".
							

							

 ⁠5.4.2. Mandatory Placement

				Mandatory placement occurs when the constraint’s score is +INFINITY or -INFINITY. In such cases, if the constraint can’t be satisfied, then the rsc resource is not permitted to run. For score=INFINITY, this includes cases where the with-rsc resource is not active.
			

				If you need resource A to always run on the same machine as resource B, you would add the following constraint:
			

 ⁠Example 5.5. Mandatory colocation constraint for two resources
​<rsc_colocation id="colocate" rsc="A" with-rsc="B" score="INFINITY"/>

				Remember, because INFINITY was used, if B can’t run on any of the cluster nodes (for whatever reason) then A will not be allowed to run. Whether A is running or not has no effect on B.
			

				Alternatively, you may want the opposite — that A cannot run on the same machine as B. In this case, use score="-INFINITY".
			

 ⁠Example 5.6. Mandatory anti-colocation constraint for two resources
​<rsc_colocation id="anti-colocate" rsc="A" with-rsc="B" score="-INFINITY"/>

				Again, by specifying -INFINITY, the constraint is binding. So if the only place left to run is where B already is, then A may not run anywhere.
			

				As with INFINITY, B can run even if A is stopped. However, in this case A also can run if B is stopped, because it still meets the constraint of A and B not running on the same node.
			

 ⁠5.4.3. Advisory Placement

				If mandatory placement is about "must" and "must not", then advisory placement is the "I’d prefer if" alternative. For constraints with scores greater than -INFINITY and less than INFINITY, the cluster will try to accommodate your wishes but may ignore them if the alternative is to stop some of the cluster resources.
			

				As in life, where if enough people prefer something it effectively becomes mandatory, advisory colocation constraints can combine with other elements of the configuration to behave as if they were mandatory.
			

 ⁠Example 5.7. Advisory colocation constraint for two resources
​<rsc_colocation id="colocate-maybe" rsc="A" with-rsc="B" score="500"/>

 ⁠5.4.4. Colocation by Node Attribute

				The node-attribute property of a colocation constraints allows you to express the requirement, "these resources must be on similar nodes".
			

				As an example, imagine that you have two Storage Area Networks (SANs) that are not controlled by the cluster, and each node is connected to one or the other. You may have two resources r1 and r2 such that r2 needs to use the same SAN as r1, but doesn’t necessarily have to be on the same exact node. In such a case, you could define a node attribute named san, with the value san1 or san2 on each node as appropriate. Then, you could colocate r2 with r1 using node-attribute set to san.
			

 ⁠5.5. Resource Sets

			Resource sets allow multiple resources to be affected by a single constraint.
		

 ⁠Example 5.8. A set of 3 resources
​<resource_set id="resource-set-example">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ <resource_ref id="C"/>
​</resource_set>

			Resource sets are valid inside rsc_location, rsc_order (see Section 5.6, “Ordering Sets of Resources”), rsc_colocation (see Section 5.7, “Colocating Sets of Resources”), and rsc_ticket (see Section 15.3, “Configuring Ticket Dependencies”) constraints.
		

			A resource set has a number of properties that can be set, though not all have an effect in all contexts.
		

 ⁠Table 5.4. Attributes of a resource_set Element
	Field	Default	Description
	
						
							id
						

							
						
						

							
						
							A unique name for the set
						

						
	
						
							sequential
						

							
						
							true
						

							
						
							Whether the members of the set must be acted on in order. Meaningful within rsc_order and rsc_colocation.
						

						
	
						
							require-all
						

							
						
							true
						

							
						
							Whether all members of the set must be active before continuing. With the current implementation, the cluster may continue even if only one member of the set is started, but if more than one member of the set is starting at the same time, the cluster will still wait until all of those have started before continuing (this may change in future versions). Meaningful within rsc_order.
						

						
	
						
							role
						

							
						
						

							
						
							Limit the effect of the constraint to the specified role. Meaningful within rsc_location, rsc_colocation and rsc_ticket.
						

						
	
						
							action
						

							
						
						

							
						
							Limit the effect of the constraint to the specified action. Meaningful within rsc_order.
						

						
	
						
							score
						

							
						
						

							
						
							Advanced use only. Use a specific score for this set within the constraint.
						

						

 ⁠5.6. Ordering Sets of Resources

			A common situation is for an administrator to create a chain of ordered resources, such as:
		

 ⁠Example 5.9. A chain of ordered resources
​<constraints>
​ <rsc_order id="order-1" first="A" then="B" />
​ <rsc_order id="order-2" first="B" then="C" />
​ <rsc_order id="order-3" first="C" then="D" />
​</constraints>

 ⁠[image: Ordered set]

Figure 5.1. Visual representation of the four resources' start order for the above constraints

 ⁠5.6.1. Ordered Set

				To simplify this situation, resource sets (see Section 5.5, “Resource Sets”) can be used within ordering constraints:
			

 ⁠Example 5.10. A chain of ordered resources expressed as a set
​<constraints>
​ <rsc_order id="order-1">
​ <resource_set id="ordered-set-example" sequential="true">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ </rsc_order>
​</constraints>

				While the set-based format is not less verbose, it is significantly easier to get right and maintain.
			
Important

					If you use a higher-level tool, pay attention to how it exposes this functionality. Depending on the tool, creating a set A B may be equivalent to A then B, or B then A.
				

 ⁠5.6.2. Ordering Multiple Sets

				The syntax can be expanded to allow sets of resources to be ordered relative to each other, where the members of each individual set may be ordered or unordered (controlled by the sequential property). In the example below, A and B can both start in parallel, as can C and D, however C and D can only start once both A and B are active.
			

 ⁠Example 5.11. Ordered sets of unordered resources
​<constraints>
​ <rsc_order id="order-1">
​ <resource_set id="ordered-set-1" sequential="false">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ <resource_set id="ordered-set-2" sequential="false">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ </rsc_order>
​ </constraints>

 ⁠[image: Two ordered sets]

Figure 5.2. Visual representation of the start order for two ordered sets of unordered resources

				Of course either set — or both sets — of resources can also be internally ordered (by setting sequential="true") and there is no limit to the number of sets that can be specified.
			

 ⁠Example 5.12. Advanced use of set ordering - Three ordered sets, two of which are internally unordered
​<constraints>
​ <rsc_order id="order-1">
​ <resource_set id="ordered-set-1" sequential="false">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ <resource_set id="ordered-set-2" sequential="true">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ <resource_set id="ordered-set-3" sequential="false">
​ <resource_ref id="E"/>
​ <resource_ref id="F"/>
​ </resource_set>
​ </rsc_order>
​</constraints>

 ⁠[image: Three ordered sets]

Figure 5.3. Visual representation of the start order for the three sets defined above

Important

					An ordered set with sequential=false makes sense only if there is another set in the constraint. Otherwise, the constraint has no effect.
				

 ⁠5.6.3. Resource Set OR Logic

				The unordered set logic discussed so far has all been "AND" logic. To illustrate this take the 3 resource set figure in the previous section. Those sets can be expressed, (A and B) then (C) then (D) then (E and F).
			

				Say for example we want to change the first set, (A and B), to use "OR" logic so the sets look like this: (A or B) then (C) then (D) then (E and F). This functionality can be achieved through the use of the require-all option. This option defaults to TRUE which is why the "AND" logic is used by default. Setting require-all=false means only one resource in the set needs to be started before continuing on to the next set.
			

 ⁠Example 5.13. Resource Set "OR" logic: Three ordered sets, where the first set is internally unordered with "OR" logic
​<constraints>
​ <rsc_order id="order-1">
​ <resource_set id="ordered-set-1" sequential="false" require-all="false">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ <resource_set id="ordered-set-2" sequential="true">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ <resource_set id="ordered-set-3" sequential="false">
​ <resource_ref id="E"/>
​ <resource_ref id="F"/>
​ </resource_set>
​ </rsc_order>
​</constraints>

Important

					An ordered set with require-all=false makes sense only in conjunction with sequential=false. Think of it like this: sequential=false modifies the set to be an unordered set using "AND" logic by default, and adding require-all=false flips the unordered set’s "AND" logic to "OR" logic.
				

 ⁠5.7. Colocating Sets of Resources

			Another common situation is for an administrator to create a set of colocated resources.
		

			The simplest way to do this is to define a resource group (see Section 10.1, “Groups - A Syntactic Shortcut”), but that cannot always accurately express the desired relationships. For example, maybe the resources do not need to be ordered.
		

			Another way would be to define each relationship as an individual constraint, but that causes a difficult-to-follow constraint explosion as the number of resources and combinations grow.
		

 ⁠Example 5.14. Colocation chain as individual constraints, where A is placed first, then B, then C, then D
​<constraints>
​ <rsc_colocation id="coloc-1" rsc="D" with-rsc="C" score="INFINITY"/>
​ <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
​ <rsc_colocation id="coloc-3" rsc="B" with-rsc="A" score="INFINITY"/>
​</constraints>

			To express complicated relationships with a simplified syntax
 ⁠[12], resource sets can be used within colocation constraints.
		

 ⁠Example 5.15. Equivalent colocation chain expressed using resource_set
​<constraints>
​ <rsc_colocation id="coloc-1" score="INFINITY" >
​ <resource_set id="colocated-set-example" sequential="true">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ </rsc_colocation>
​</constraints>

Note

				Within a resource_set, the resources are listed in the order they are placed, which is the reverse of the order in which they are colocated. In the above example, resource A is placed before resource B, which is the same as saying resource B is colocated with resource A.
			

			As with individual constraints, a resource that can’t be active prevents any resource that must be colocated with it from being active. In both of the two previous examples, if B is unable to run, then both C and by inference D must remain stopped.
		
Important

				If you use a higher-level tool, pay attention to how it exposes this functionality. Depending on the tool, creating a set A B may be equivalent to A with B, or B with A.
			

			Resource sets can also be used to tell the cluster that entire sets of resources must be colocated relative to each other, while the individual members within any one set may or may not be colocated relative to each other (determined by the set’s sequential property).
		

			In the following example, resources B, C, and D will each be colocated with A (which will be placed first). A must be able to run in order for any of the resources to run, but any of B, C, or D may be stopped without affecting any of the others.
		

 ⁠Example 5.16. Using colocated sets to specify a shared dependency
​<constraints>
​ <rsc_colocation id="coloc-1" score="INFINITY" >
​ <resource_set id="colocated-set-2" sequential="false">
​ <resource_ref id="B"/>
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ <resource_set id="colocated-set-1" sequential="true">
​ <resource_ref id="A"/>
​ </resource_set>
​ </rsc_colocation>
​</constraints>

Note

				Pay close attention to the order in which resources and sets are listed. While the members of any one sequential set are placed first to last (i.e., the colocation dependency is last with first), multiple sets are placed last to first (i.e. the colocation dependency is first with last).
			

Important

				A colocated set with sequential="false" makes sense only if there is another set in the constraint. Otherwise, the constraint has no effect.
			

			There is no inherent limit to the number and size of the sets used. The only thing that matters is that in order for any member of one set in the constraint to be active, all members of sets listed after it must also be active (and naturally on the same node); and if a set has sequential="true", then in order for one member of that set to be active, all members listed before it must also be active.
		

			If desired, you can restrict the dependency to instances of promotable clone resources that are in a specific role, using the set’s role property.
		

 ⁠Example 5.17. Colocation in which the members of the middle set have no interdependencies, and the last set listed applies only to instances in the master role
​<constraints>
​ <rsc_colocation id="coloc-1" score="INFINITY" >
​ <resource_set id="colocated-set-1" sequential="true">
​ <resource_ref id="F"/>
​ <resource_ref id="G"/>
​ </resource_set>
​ <resource_set id="colocated-set-2" sequential="false">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ <resource_ref id="E"/>
​ </resource_set>
​ <resource_set id="colocated-set-3" sequential="true" role="Master">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ </rsc_colocation>
​</constraints>

 ⁠[image: Colocation chain]

Figure 5.4. Visual representation of the above example (resources are placed from left to right)

Note

				Unlike ordered sets, colocated sets do not use the require-all option.
			

[11]
				While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending on the situation, the cluster is not quite so smart. Yet.
			

[12]
				which is not the same as saying easy to follow
			

 ⁠Chapter 6. Fencing

		
 ⁠
	

 ⁠6.1. What Is Fencing?

			Fencing is the ability to make a node unable to run resources, even when that node is unresponsive to cluster commands.
		

			Fencing is also known as STONITH, an acronym for "Shoot The Other Node In The Head", since the most common fencing method is cutting power to the node. Another method is "fabric fencing", cutting the node’s access to some capability required to run resources (such as network access or a shared disk).
		

 ⁠6.2. Why Is Fencing Necessary?

			Fencing protects your data from being corrupted by malfunctioning nodes or unintentional concurrent access to shared resources.
		

			Fencing protects against the "split brain" failure scenario, where cluster nodes have lost the ability to reliably communicate with each other but are still able to run resources. If the cluster just assumed that uncommunicative nodes were down, then multiple instances of a resource could be started on different nodes.
		

			The effect of split brain depends on the resource type. For example, an IP address brought up on two hosts on a network will cause packets to randomly be sent to one or the other host, rendering the IP useless. For a database or clustered file system, the effect could be much more severe, causing data corruption or divergence.
		

			Fencing also is used when a resource cannot otherwise be stopped. If a failed resource fails to stop, it cannot be recovered elsewhere. Fencing the resource’s node is the only way to ensure the resource is recoverable.
		

			Users may also configure the on-fail property of any resource operation to fencing, in which case the cluster will fence the resource’s node if the operation fails.
		

 ⁠6.3. Fence Devices

			A fence device (or fencing device) is a special type of resource that provides the means to fence a node.
		

			Examples of fencing devices include intelligent power switches and IPMI devices that accept SNMP commands to cut power to a node, and iSCSI controllers that allow SCSI reservations to be used to cut a node’s access to a shared disk.
		

			Since fencing devices will be used to recover from loss of networking connectivity to other nodes, it is essential that they do not rely on the same network as the cluster itself, otherwise that network becomes a single point of failure.
		

			Since loss of a node due to power outage is indistinguishable from loss of network connectivity to that node, it is also essential that at least one fence device for a node does not share power with that node. For example, an on-board IPMI controller that shares power with its host should not be used as the sole fencing device for that host.
		

			Since fencing is used to isolate malfunctioning nodes, no fence device should rely on its target functioning properly. This includes, for example, devices that ssh into a node and issue a shutdown command (such devices might be suitable for testing, but never for production).
		

 ⁠6.4. Fence Agents

			A fence agent (or fencing agent) is a stonith-class resource agent.
		

			The fence agent standard provides commands (such as off and reboot) that the cluster can use to fence nodes. As with other resource agent classes, this allows a layer of abstraction so that Pacemaker doesn’t need any knowledge about specific fencing technologies — that knowledge is isolated in the agent.
		

 ⁠6.5. When a Fence Device Can Be Used

			Fencing devices do not actually "run" like most services. Typically, they just provide an interface for sending commands to an external device.
		

			Additionally, fencing may be initiated by Pacemaker, by other cluster-aware software such as DRBD or DLM, or manually by an administrator, at any point in the cluster life cycle, including before any resources have been started.
		

			To accommodate this, Pacemaker does not require the fence device resource to be "started" in order to be used. Whether a fence device is started or not determines whether a node runs any recurring monitor for the device, and gives the node a slight preference for being chosen to execute fencing using that device.
		

			By default, any node can execute any fencing device. If a fence device is disabled by setting its target-role to Stopped, then no node can use that device. If mandatory location constraints prevent a specific node from "running" a fence device, then that node will never be chosen to execute fencing using the device. A node may fence itself, but the cluster will choose that only if no other nodes can do the fencing.
		

			A common configuration scenario is to have one fence device per target node. In such a case, users often configure anti-location constraints so that the target node does not monitor its own device. The best practice is to make the constraint optional (i.e. a finite negative score rather than -INFINITY), so that the node can fence itself if no other nodes can.
		

 ⁠6.6. Limitations of Fencing Resources

			Fencing resources have certain limitations that other resource classes don’t:
		
	
					They may have only one set of meta-attributes and one set of instance attributes.
				

	
					If rules are used to determine fencing resource options, these may only be evaluated when first read, meaning that later changes to the rules will have no effect. Therefore, it is better to avoid confusion and not use rules at all with fencing resources.
				

			These limitations could be revisited if there is significant user demand.
		

 ⁠6.7. Special Options for Fencing Resources

			The table below lists special instance attributes that may be set for any fencing resource (not meta-attributes, even though they are interpreted by pacemaker rather than the fence agent). These are also listed in the man page for pacemaker-fenced.
		

 ⁠Table 6.1. Additional Properties of Fencing Resources
	Field	Type	Default	Description
	
						
							stonith-timeout
						

							
						
							NA
						

							
						
							NA
						

							
						
							Older versions used this to override the default period to wait for a STONITH (reboot, on, off) action to complete for this device. It has been replaced by the pcmk_reboot_timeout and pcmk_off_timeout properties.
						

						
	
						
							provides
						

							
						
							string
						

							
						
						

							
						
							Any special capability provided by the fence device. Currently, only one such capability is meaningful: unfencing (see Section 6.8, “Unfencing”).
						

						
	
						
							pcmk_host_map
						

							
						
							string
						

							
						
						

							
						
							A mapping of host names to ports numbers for devices that do not support host names. Example: node1:1;node2:2,3 tells the cluster to use port 1 for node1 and ports 2 and 3 for node2. If pcmk_host_check is explicitly set to static-list, either this or pcmk_host_list must be set.
						

						
	
						
							pcmk_host_list
						

							
						
							string
						

							
						
						

							
						
							A list of machines controlled by this device. If pcmk_host_check is explicitly set to static-list, either this or pcmk_host_map must be set.
						

						
	
						
							pcmk_host_check
						

							
						
							string
						

							
						
							A value appropriate to other configuration options and device capabilities (see note below)
						

							
						
							How to determine which machines are controlled by the device. Allowed values:
						

							
									dynamic-list: query the device via the "list" command
								

	
									static-list: check the pcmk_host_list or pcmk_host_map attribute
								

	
									status: query the device via the "status" command
								

	
									none: assume every device can fence every machine
								

						
							
						

						
	
						
							pcmk_delay_max
						

							
						
							time
						

							
						
							0s
						

							
						
							Enable a random delay of up to the time specified before executing fencing actions. This is sometimes used in two-node clusters to ensure that the nodes don’t fence each other at the same time. The overall delay introduced by pacemaker is derived from this random delay value adding a static delay so that the sum is kept below the maximum delay.
						

						
							
						

						
	
						
							pcmk_delay_base
						

							
						
							time
						

							
						
							0s
						

							
						
							Enable a static delay before executing fencing actions. This can be used e.g. in two-node clusters to ensure that the nodes don’t fence each other, by having separate fencing resources with different values. The node that is fenced with the shorter delay will lose a fencing race. The overall delay introduced by pacemaker is derived from this value plus a random delay such that the sum is kept below the maximum delay.
						

						
							
						

						
	
						
							pcmk_action_limit
						

							
						
							integer
						

							
						
							1
						

							
						
							The maximum number of actions that can be performed in parallel on this device, if the cluster option concurrent-fencing is true. -1 is unlimited.
						

						
							
						

						
	
						
							pcmk_host_argument
						

							
						
							string
						

							
						
							port otherwise plug if supported according to the metadata of the fence agent
						

							
						
							Advanced use only. Which parameter should be supplied to the fence agent to identify the node to be fenced. Some devices support neither the standard plug nor the deprecated port parameter, or may provide additional ones. Use this to specify an alternate, device-specific parameter. A value of none tells the cluster not to supply any additional parameters.
						

						
	
						
							pcmk_reboot_action
						

							
						
							string
						

							
						
							reboot
						

							
						
							Advanced use only. The command to send to the resource agent in order to reboot a node. Some devices do not support the standard commands or may provide additional ones. Use this to specify an alternate, device-specific command.
						

						
	
						
							pcmk_reboot_timeout
						

							
						
							time
						

							
						
							60s
						

							
						
							Advanced use only. Specify an alternate timeout to use for reboot actions instead of the value of stonith-timeout. Some devices need much more or less time to complete than normal. Use this to specify an alternate, device-specific timeout.
						

						
	
						
							pcmk_reboot_retries
						

							
						
							integer
						

							
						
							2
						

							
						
							Advanced use only. The maximum number of times to retry the reboot command within the timeout period. Some devices do not support multiple connections, and operations may fail if the device is busy with another task, so Pacemaker will automatically retry the operation, if there is time remaining. Use this option to alter the number of times Pacemaker retries before giving up.
						

						
	
						
							pcmk_off_action
						

							
						
							string
						

							
						
							off
						

							
						
							Advanced use only. The command to send to the resource agent in order to shut down a node. Some devices do not support the standard commands or may provide additional ones. Use this to specify an alternate, device-specific command.
						

						
	
						
							pcmk_off_timeout
						

							
						
							time
						

							
						
							60s
						

							
						
							Advanced use only. Specify an alternate timeout to use for off actions instead of the value of stonith-timeout. Some devices need much more or less time to complete than normal. Use this to specify an alternate, device-specific timeout.
						

						
	
						
							pcmk_off_retries
						

							
						
							integer
						

							
						
							2
						

							
						
							Advanced use only. The maximum number of times to retry the off command within the timeout period. Some devices do not support multiple connections, and operations may fail if the device is busy with another task, so Pacemaker will automatically retry the operation, if there is time remaining. Use this option to alter the number of times Pacemaker retries before giving up.
						

						
	
						
							pcmk_list_action
						

							
						
							string
						

							
						
							list
						

							
						
							Advanced use only. The command to send to the resource agent in order to list nodes. Some devices do not support the standard commands or may provide additional ones. Use this to specify an alternate, device-specific command.
						

						
	
						
							pcmk_list_timeout
						

							
						
							time
						

							
						
							60s
						

							
						
							Advanced use only. Specify an alternate timeout to use for list actions instead of the value of stonith-timeout. Some devices need much more or less time to complete than normal. Use this to specify an alternate, device-specific timeout.
						

						
	
						
							pcmk_list_retries
						

							
						
							integer
						

							
						
							2
						

							
						
							Advanced use only. The maximum number of times to retry the list command within the timeout period. Some devices do not support multiple connections, and operations may fail if the device is busy with another task, so Pacemaker will automatically retry the operation, if there is time remaining. Use this option to alter the number of times Pacemaker retries before giving up.
						

						
	
						
							pcmk_monitor_action
						

							
						
							string
						

							
						
							monitor
						

							
						
							Advanced use only. The command to send to the resource agent in order to report extended status. Some devices do not support the standard commands or may provide additional ones. Use this to specify an alternate, device-specific command.
						

						
	
						
							pcmk_monitor_timeout
						

							
						
							time
						

							
						
							60s
						

							
						
							Advanced use only. Specify an alternate timeout to use for monitor actions instead of the value of stonith-timeout. Some devices need much more or less time to complete than normal. Use this to specify an alternate, device-specific timeout.
						

						
	
						
							pcmk_monitor_retries
						

							
						
							integer
						

							
						
							2
						

							
						
							Advanced use only. The maximum number of times to retry the monitor command within the timeout period. Some devices do not support multiple connections, and operations may fail if the device is busy with another task, so Pacemaker will automatically retry the operation, if there is time remaining. Use this option to alter the number of times Pacemaker retries before giving up.
						

						
	
						
							pcmk_status_action
						

							
						
							string
						

							
						
							status
						

							
						
							Advanced use only. The command to send to the resource agent in order to report status. Some devices do not support the standard commands or may provide additional ones. Use this to specify an alternate, device-specific command.
						

						
	
						
							pcmk_status_timeout
						

							
						
							time
						

							
						
							60s
						

							
						
							Advanced use only. Specify an alternate timeout to use for status actions instead of the value of stonith-timeout. Some devices need much more or less time to complete than normal. Use this to specify an alternate, device-specific timeout.
						

						
	
						
							pcmk_status_retries
						

							
						
							integer
						

							
						
							2
						

							
						
							Advanced use only. The maximum number of times to retry the status command within the timeout period. Some devices do not support multiple connections, and operations may fail if the device is busy with another task, so Pacemaker will automatically retry the operation, if there is time remaining. Use this option to alter the number of times Pacemaker retries before giving up.
						

						

Note

				The default value for pcmk_host_check is static-list if either pcmk_host_list or pcmk_host_map is configured. If neither of those are configured, the default is dynamic-list if the fence device supports the list action, or status if the fence device supports the status action but not the list action. If none of those conditions apply, the default is none.
			

 ⁠6.8. Unfencing

			With fabric fencing (such as cutting network or shared disk access rather than power), it is expected that the cluster will fence the node, and then a system administrator must manually investigate what went wrong, correct any issues found, then reboot (or restart the cluster services on) the node.
		

			Once the node reboots and rejoins the cluster, some fabric fencing devices require an explicit command to restore the node’s access. This capability is called unfencing and is typically implemented as the fence agent’s on command.
		

			If any cluster resource has requires set to unfencing, then that resource will not be probed or started on a node until that node has been unfenced.
		

 ⁠6.9. Fence Devices Dependent on Other Resources

			In some cases, a fence device may require some other cluster resource (such as an IP address) to be active in order to function properly.
		

			This is obviously undesirable in general: fencing may be required when the depended-on resource is not active, or fencing may be required because the node running the depended-on resource is no longer responding.
		

			However, this may be acceptable under certain conditions:
		
	
					The dependent fence device should not be able to target any node that is allowed to run the depended-on resource.
				

	
					The depended-on resource should not be disabled during production operation.
				

	
					The concurrent-fencing cluster property should be set to true. Otherwise, if both the node running the depended-on resource and some node targeted by the dependent fence device need to be fenced, the fencing of the node running the depended-on resource might be ordered first, making the second fencing impossible and blocking further recovery. With concurrent fencing, the dependent fence device might fail at first due to the depended-on resource being unavailable, but it will be retried and eventually succeed once the resource is brought back up.
				

			Even under those conditions, there is one unlikely problem scenario. The DC always schedules fencing of itself after any other fencing needed, to avoid unnecessary repeated DC elections. If the dependent fence device targets the DC, and both the DC and a different node running the depended-on resource need to be fenced, the DC fencing will always fail and block further recovery. Note, however, that losing a DC node entirely causes some other node to become DC and schedule the fencing, so this is only a risk when a stop or other operation with on-fail set to fencing fails on the DC.
		

 ⁠6.10. Configuring Fencing

	
					Find the correct driver:
				
stonith_admin --list-installed

	
					Find the required parameters associated with the device (replacing $AGENT_NAME with the name obtained from the previous step):
				
stonith_admin --metadata --agent $AGENT_NAME

	
					Create a file called stonith.xml containing a primitive resource with a class of stonith, a type equal to the agent name obtained earlier, and a parameter for each of the values returned in the previous step.
				

	
					If the device does not know how to fence nodes based on their uname, you may also need to set the special pcmk_host_map parameter. See man pacemaker-fenced for details.
				

	
					If the device does not support the list command, you may also need to set the special pcmk_host_list and/or pcmk_host_check parameters. See man pacemaker-fenced for details.
				

	
					If the device does not expect the victim to be specified with the port parameter, you may also need to set the special pcmk_host_argument parameter. See man pacemaker-fenced for details.
				

	
					Upload it into the CIB using cibadmin:
				
cibadmin -C -o resources --xml-file stonith.xml

	
					Set stonith-enabled to true:
				
crm_attribute -t crm_config -n stonith-enabled -v true

	
					Once the stonith resource is running, you can test it by executing the following (although you might want to stop the cluster on that machine first):
				
stonith_admin --reboot nodename

 ⁠6.10.1. Example Fencing Configuration

				Assume we have a chassis containing four nodes and an IPMI device active on 192.0.2.1. We would choose the fence_ipmilan driver, and obtain the following list of parameters:
			

 ⁠Example 6.1. Obtaining a list of Fence Agent Parameters
stonith_admin --metadata -a fence_ipmilan
​<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI over LAN">
​ <symlink name="fence_ilo3" shortdesc="Fence agent for HP iLO3"/>
​ <symlink name="fence_ilo4" shortdesc="Fence agent for HP iLO4"/>
​ <symlink name="fence_idrac" shortdesc="Fence agent for Dell iDRAC"/>
​ <symlink name="fence_imm" shortdesc="Fence agent for IBM Integrated Management Module"/>
​ <longdesc>
​ </longdesc>
​ <vendor-url>
​ </vendor-url>
​ <parameters>
​ <parameter name="auth" unique="0" required="0">
​ <getopt mixed="-A"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="ipaddr" unique="0" required="1">
​ <getopt mixed="-a"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="passwd" unique="0" required="0">
​ <getopt mixed="-p"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="passwd_script" unique="0" required="0">
​ <getopt mixed="-S"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="lanplus" unique="0" required="0">
​ <getopt mixed="-P"/>
​ <content type="boolean"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="login" unique="0" required="0">
​ <getopt mixed="-l"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="action" unique="0" required="0">
​ <getopt mixed="-o"/>
​ <content type="string" default="reboot"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="timeout" unique="0" required="0">
​ <getopt mixed="-t"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="cipher" unique="0" required="0">
​ <getopt mixed="-C"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="method" unique="0" required="0">
​ <getopt mixed="-M"/>
​ <content type="string" default="onoff"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="power_wait" unique="0" required="0">
​ <getopt mixed="-T"/>
​ <content type="string" default="2"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="delay" unique="0" required="0">
​ <getopt mixed="-f"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="privlvl" unique="0" required="0">
​ <getopt mixed="-L"/>
​ <content type="string"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ <parameter name="verbose" unique="0" required="0">
​ <getopt mixed="-v"/>
​ <content type="boolean"/>
​ <shortdesc>
​ </shortdesc>
​ </parameter>
​ </parameters>
​ <actions>
​ <action name="on"/>
​ <action name="off"/>
​ <action name="reboot"/>
​ <action name="status"/>
​ <action name="diag"/>
​ <action name="list"/>
​ <action name="monitor"/>
​ <action name="metadata"/>
​ <action name="stop" timeout="20s"/>
​ <action name="start" timeout="20s"/>
​ </actions>
​</resource-agent>

				Based on that, we would create a fencing resource fragment that might look like this:
			

 ⁠Example 6.2. An IPMI-based Fencing Resource
​<primitive id="Fencing" class="stonith" type="fence_ipmilan" >
​ <instance_attributes id="Fencing-params" >
​ <nvpair id="Fencing-passwd" name="passwd" value="testuser" />
​ <nvpair id="Fencing-login" name="login" value="abc123" />
​ <nvpair id="Fencing-ipaddr" name="ipaddr" value="192.0.2.1" />
​ <nvpair id="Fencing-pcmk_host_list" name="pcmk_host_list" value="pcmk-1 pcmk-2" />
​ </instance_attributes>
​ <operations >
​ <op id="Fencing-monitor-10m" interval="10m" name="monitor" timeout="300s" />
​ </operations>
​</primitive>

				Finally, we need to enable fencing:
			
crm_attribute -t crm_config -n stonith-enabled -v true

 ⁠6.11. Fencing Topologies

			Pacemaker supports fencing nodes with multiple devices through a feature called fencing topologies. Fencing topologies may be used to provide alternative devices in case one fails, or to require multiple devices to all be executed successfully in order to consider the node successfully fenced, or even a combination of the two.
		

			Create the individual devices as you normally would, then define one or more fencing-level entries in the fencing-topology section of the configuration.
		
	
					Each fencing level is attempted in order of ascending index. Allowed values are 1 through 9.
				

	
					If a device fails, processing terminates for the current level. No further devices in that level are exercised, and the next level is attempted instead.
				

	
					If the operation succeeds for all the listed devices in a level, the level is deemed to have passed.
				

	
					The operation is finished when a level has passed (success), or all levels have been attempted (failed).
				

	
					If the operation failed, the next step is determined by the scheduler and/or the controller.
				

			Some possible uses of topologies include:
		
	
					Try on-board IPMI, then an intelligent power switch if that fails
				

	
					Try fabric fencing of both disk and network, then fall back to power fencing if either fails
				

	
					Wait up to a certain time for a kernel dump to complete, then cut power to the node
				

 ⁠Table 6.2. Properties of Fencing Levels
	Field	Description
	
						
							id
						

							
						
							A unique name for the level
						

						
	
						
							target
						

							
						
							The name of a single node to which this level applies
						

						
	
						
							target-pattern
						

							
						
							An extended regular expression (as defined in POSIX) matching the names of nodes to which this level applies
						

						
	
						
							target-attribute
						

							
						
							The name of a node attribute that is set (to target-value) for nodes to which this level applies
						

						
	
						
							target-value
						

							
						
							The node attribute value (of target-attribute) that is set for nodes to which this level applies
						

						
	
						
							index
						

							
						
							The order in which to attempt the levels. Levels are attempted in ascending order until one succeeds. Valid values are 1 through 9.
						

						
	
						
							devices
						

							
						
							A comma-separated list of devices that must all be tried for this level
						

						

 ⁠Example 6.3. Fencing topology with different devices for different nodes
​ <cib crm_feature_set="3.0.6" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
​ <configuration>
​ ...
​ <fencing-topology>
​ <!-- For pcmk-1, try poison-pill and fail back to power -->
​ <fencing-level id="f-p1.1" target="pcmk-1" index="1" devices="poison-pill"/>
​ <fencing-level id="f-p1.2" target="pcmk-1" index="2" devices="power"/>
​
​ <!-- For pcmk-2, try disk and network, and fail back to power -->
​ <fencing-level id="f-p2.1" target="pcmk-2" index="1" devices="disk,network"/>
​ <fencing-level id="f-p2.2" target="pcmk-2" index="2" devices="power"/>
​ </fencing-topology>
​ ...
​ <configuration>
​ <status/>
​</cib>

 ⁠6.11.1. Example Dual-Layer, Dual-Device Fencing Topologies

				The following example illustrates an advanced use of fencing-topology in a cluster with the following properties:
			
	
						3 nodes (2 active prod-mysql nodes, 1 prod_mysql-rep in standby for quorum purposes)
					

	
						the active nodes have an IPMI-controlled power board reached at 192.0.2.1 and 192.0.2.2
					

	
						the active nodes also have two independent PSUs (Power Supply Units) connected to two independent PDUs (Power Distribution Units) reached at 198.51.100.1 (port 10 and port 11) and 203.0.113.1 (port 10 and port 11)
					

	
						the first fencing method uses the fence_ipmi agent
					

	
						the second fencing method uses the fence_apc_snmp agent targetting 2 fencing devices (one per PSU, either port 10 or 11)
					

	
						fencing is only implemented for the active nodes and has location constraints
					

	
						fencing topology is set to try IPMI fencing first then default to a "sure-kill" dual PDU fencing
					

				In a normal failure scenario, STONITH will first select fence_ipmi to try to kill the faulty node. Using a fencing topology, if that first method fails, STONITH will then move on to selecting fence_apc_snmp twice:
			
	
						once for the first PDU
					

	
						again for the second PDU
					

				The fence action is considered successful only if both PDUs report the required status. If any of them fails, STONITH loops back to the first fencing method, fence_ipmi, and so on until the node is fenced or fencing action is cancelled.
			
First fencing method: single IPMI device

					Each cluster node has it own dedicated IPMI channel that can be called for fencing using the following primitives:
				
​<primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
​ <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose" value="true"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
​ </instance_attributes>
​</primitive>
​<primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">
​ <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose" value="true"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
​ </instance_attributes>
​</primitive>
Second fencing method: dual PDU devices

					Each cluster node also has two distinct power channels controlled by two distinct PDUs. That means a total of 4 fencing devices configured as follows:
				
	
						Node 1, PDU 1, PSU 1 @ port 10
					

	
						Node 1, PDU 2, PSU 2 @ port 10
					

	
						Node 2, PDU 1, PSU 1 @ port 11
					

	
						Node 2, PDU 2, PSU 2 @ port 11
					

				The matching fencing agents are configured as follows:
			
​<primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes">
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port" value="10"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ </instance_attributes>
​</primitive>
​<primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes">
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port" value="10"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ </instance_attributes>
​</primitive>
​<primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes">
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port" value="11"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ </instance_attributes>
​</primitive>
​<primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes">
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port" value="11"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ </instance_attributes>
​</primitive>
Location Constraints

					To prevent STONITH from trying to run a fencing agent on the same node it is supposed to fence, constraints are placed on all the fencing primitives:
				
​<constraints>
​ <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-mysql1_ipmi" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-mysql2_ipmi" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-mysql1_apc2" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-mysql1_apc1" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-mysql2_apc1" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-mysql2_apc2" score="-INFINITY"/>
​</constraints>
Fencing topology

					Now that all the fencing resources are defined, it’s time to create the right topology. We want to first fence using IPMI and if that does not work, fence both PDUs to effectively and surely kill the node.
				
​<fencing-topology>
​ <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-mysql1"/>
​ <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3" index="2" target="prod-mysql1"/>
​ <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-mysql2"/>
​ <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1" index="2" target="prod-mysql2"/>
​</fencing-topology>

				Please note, in fencing-topology, the lowest index value determines the priority of the first fencing method.
			
Final configuration

					Put together, the configuration looks like this:
				
​<cib admin_epoch="0" crm_feature_set="3.0.7" epoch="292" have-quorum="1" num_updates="29" validate-with="pacemaker-1.2">
​ <configuration>
​ <crm_config>
​ <cluster_property_set id="cib-bootstrap-options">
​ <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="true"/>
​ <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="off"/>
​ <nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes" value="3"/>
​ ...
​ </cluster_property_set>
​ </crm_config>
​ <nodes>
​ <node id="prod-mysql1" uname="prod-mysql1">
​ <node id="prod-mysql2" uname="prod-mysql2"/>
​ <node id="prod-mysql-rep1" uname="prod-mysql-rep1"/>
​ <instance_attributes id="prod-mysql-rep1">
​ <nvpair id="prod-mysql-rep1-standby" name="standby" value="on"/>
​ </instance_attributes>
​ </node>
​ </nodes>
​ <resources>
​ <primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
​ <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose" value="true"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
​ </instance_attributes>
​ </primitive>
​ <primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">
​ <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose" value="true"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
​ </instance_attributes>
​ </primitive>
​ <primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes">
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port" value="10"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ </instance_attributes>
​ </primitive>
​ <primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes">
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port" value="10"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
​ </instance_attributes>
​ </primitive>
​ <primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes">
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port" value="11"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ </instance_attributes>
​ </primitive>
​ <primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp">
​ <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes">
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action" value="off"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port" value="11"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
​ <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
​ </instance_attributes>
​ </primitive>
​ </resources>
​ <constraints>
​ <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-mysql1_ipmi" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-mysql2_ipmi" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-mysql1_apc2" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-mysql1_apc1" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-mysql2_apc1" score="-INFINITY"/>
​ <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-mysql2_apc2" score="-INFINITY"/>
​ </constraints>
​ <fencing-topology>
​ <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-mysql1"/>
​ <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3" index="2" target="prod-mysql1"/>
​ <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-mysql2"/>
​ <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1" index="2" target="prod-mysql2"/>
​ </fencing-topology>
​ ...
​ </configuration>
​</cib>

 ⁠6.12. Remapping Reboots

			When the cluster needs to reboot a node, whether because stonith-action is reboot or because a reboot was manually requested (such as by stonith_admin --reboot), it will remap that to other commands in two cases:
		
	
					If the chosen fencing device does not support the reboot command, the cluster will ask it to perform off instead.
				

	
					If a fencing topology level with multiple devices must be executed, the cluster will ask all the devices to perform off, then ask the devices to perform on.
				

			To understand the second case, consider the example of a node with redundant power supplies connected to intelligent power switches. Rebooting one switch and then the other would have no effect on the node. Turning both switches off, and then on, actually reboots the node.
		

			In such a case, the fencing operation will be treated as successful as long as the off commands succeed, because then it is safe for the cluster to recover any resources that were on the node. Timeouts and errors in the on phase will be logged but ignored.
		

			When a reboot operation is remapped, any action-specific timeout for the remapped action will be used (for example, pcmk_off_timeout will be used when executing the off command, not pcmk_reboot_timeout).
		

 ⁠Chapter 7. Alerts

		
 ⁠
	

		Alerts may be configured to take some external action when a cluster event occurs (node failure, resource starting or stopping, etc.).
	

 ⁠7.1. Alert Agents

			As with resource agents, the cluster calls an external program (an alert agent) to handle alerts. The cluster passes information about the event to the agent via environment variables. Agents can do anything desired with this information (send an e-mail, log to a file, update a monitoring system, etc.).
		

 ⁠Example 7.1. Simple alert configuration
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh" />
​ </alerts>
​</configuration>

			In the example above, the cluster will call my-script.sh for each event.
		

			Multiple alert agents may be configured; the cluster will call all of them for each event.
		

			Alert agents will be called only on cluster nodes. They will be called for events involving Pacemaker Remote nodes, but they will never be called on those nodes.
		

 ⁠7.2. Alert Recipients

			Usually alerts are directed towards a recipient. Thus each alert may be additionally configured with one or more recipients. The cluster will call the agent separately for each recipient.
		

 ⁠Example 7.2. Alert configuration with recipient
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh">
​ <recipient id="my-alert-recipient" value="some-address"/>
​ </alert>
​ </alerts>
​</configuration>

			In the above example, the cluster will call my-script.sh for each event, passing the recipient some-address as an environment variable.
		

			The recipient may be anything the alert agent can recognize — an IP address, an e-mail address, a file name, whatever the particular agent supports.
		

 ⁠7.3. Alert Meta-Attributes

			As with resource agents, meta-attributes can be configured for alert agents to affect how Pacemaker calls them.
		

 ⁠Table 7.1. Meta-Attributes of an Alert
	Meta-Attribute	Default	Description
	
						
							timestamp-format
						

							
						
							%H:%M:%S.%06N
						

							
						
							Format the cluster will use when sending the event’s timestamp to the agent. This is a string as used with the date(1) command.
						

						
	
						
							timeout
						

							
						
							30s
						

							
						
							If the alert agent does not complete within this amount of time, it will be terminated.
						

						

			Meta-attributes can be configured per alert agent and/or per recipient.
		

 ⁠Example 7.3. Alert configuration with meta-attributes
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh">
​ <meta_attributes id="my-alert-attributes">
​ <nvpair id="my-alert-attributes-timeout" name="timeout"
​ value="15s"/>
​ </meta_attributes>
​ <recipient id="my-alert-recipient1" value="someuser@example.com">
​ <meta_attributes id="my-alert-recipient1-attributes">
​ <nvpair id="my-alert-recipient1-timestamp-format"
​ name="timestamp-format" value="%D %H:%M"/>
​ </meta_attributes>
​ </recipient>
​ <recipient id="my-alert-recipient2" value="otheruser@example.com">
​ <meta_attributes id="my-alert-recipient2-attributes">
​ <nvpair id="my-alert-recipient2-timestamp-format"
​ name="timestamp-format" value="%c"/>
​ </meta_attributes>
​ </recipient>
​ </alert>
​ </alerts>
​</configuration>

			In the above example, the my-script.sh will get called twice for each event, with each call using a 15-second timeout. One call will be passed the recipient someuser@example.com and a timestamp in the format %D %H:%M, while the other call will be passed the recipient otheruser@example.com and a timestamp in the format %c.
		

 ⁠7.4. Alert Instance Attributes

			As with resource agents, agent-specific configuration values may be configured as instance attributes. These will be passed to the agent as additional environment variables. The number, names and allowed values of these instance attributes are completely up to the particular agent.
		

 ⁠Example 7.4. Alert configuration with instance attributes
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh">
​ <meta_attributes id="my-alert-attributes">
​ <nvpair id="my-alert-attributes-timeout" name="timeout"
​ value="15s"/>
​ </meta_attributes>
​ <instance_attributes id="my-alert-options">
​ <nvpair id="my-alert-options-debug" name="debug" value="false"/>
​ </instance_attributes>
​ <recipient id="my-alert-recipient1" value="someuser@example.com"/>
​ </alert>
​ </alerts>
​</configuration>

 ⁠7.5. Alert Filters

			By default, an alert agent will be called for node events, fencing events, and resource events. An agent may choose to ignore certain types of events, but there is still the overhead of calling it for those events. To eliminate that overhead, you may select which types of events the agent should receive.
		

 ⁠Example 7.5. Alert configuration to receive only node events and fencing events
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh">
​ <select>
​ <select_nodes />
​ <select_fencing />
​ </select>
​ <recipient id="my-alert-recipient1" value="someuser@example.com"/>
​ </alert>
​ </alerts>
​</configuration>

			The possible options within <select> are <select_nodes>, <select_fencing>, <select_resources>, and <select_attributes>.
		

			With <select_attributes> (the only event type not enabled by default), the agent will receive alerts when a node attribute changes. If you wish the agent to be called only when certain attributes change, you can configure that as well.
		

 ⁠Example 7.6. Alert configuration to be called when certain node attributes change
​<configuration>
​ <alerts>
​ <alert id="my-alert" path="/path/to/my-script.sh">
​ <select>
​ <select_attributes>
​ <attribute id="alert-standby" name="standby" />
​ <attribute id="alert-shutdown" name="shutdown" />
​ </select_attributes>
​ </select>
​ <recipient id="my-alert-recipient1" value="someuser@example.com"/>
​ </alert>
​ </alerts>
​</configuration>

			Node attribute alerts are currently considered experimental. Alerts may be limited to attributes set via attrd_updater, and agents may be called multiple times with the same attribute value.
		

 ⁠7.6. Using the Sample Alert Agents

			Pacemaker provides several sample alert agents, installed in /usr/share/pacemaker/alerts by default.
		

			While these sample scripts may be copied and used as-is, they are provided mainly as templates to be edited to suit your purposes. See their source code for the full set of instance attributes they support.
		

 ⁠Example 7.7. Sending cluster events as SNMP traps
​<configuration>
​ <alerts>
​ <alert id="snmp_alert" path="/path/to/alert_snmp.sh">
​ <instance_attributes id="config_for_alert_snmp">
​ <nvpair id="trap_node_states" name="trap_node_states" value="all"/>
​ </instance_attributes>
​ <meta_attributes id="config_for_timestamp">
​ <nvpair id="ts_fmt" name="timestamp-format"
​ value="%Y-%m-%d,%H:%M:%S.%01N"/>
​ </meta_attributes>
​ <recipient id="snmp_destination" value="192.168.1.2"/>
​ </alert>
​ </alerts>
​</configuration>

 ⁠Example 7.8. Sending cluster events as e-mails
​ <configuration>
​ <alerts>
​ <alert id="smtp_alert" path="/path/to/alert_smtp.sh">
​ <instance_attributes id="config_for_alert_smtp">
​ <nvpair id="email_sender" name="email_sender"
​ value="donotreply@example.com"/>
​ </instance_attributes>
​ <recipient id="smtp_destination" value="admin@example.com"/>
​ </alert>
​ </alerts>
​ </configuration>

 ⁠7.7. Writing an Alert Agent

 ⁠Table 7.2. Environment variables passed to alert agents
	Environment Variable	Description
	
						
							CRM_alert_kind
						

							
						
							The type of alert (node, fencing, resource, or attribute)
						

						
	
						
							CRM_alert_version
						

							
						
							The version of Pacemaker sending the alert
						

						
	
						
							CRM_alert_recipient
						

							
						
							The configured recipient
						

						
	
						
							CRM_alert_node_sequence
						

							
						
							A sequence number increased whenever an alert is being issued on the local node, which can be used to reference the order in which alerts have been issued by Pacemaker. An alert for an event that happened later in time reliably has a higher sequence number than alerts for earlier events. Be aware that this number has no cluster-wide meaning.
						

						
	
						
							CRM_alert_timestamp
						

							
						
							A timestamp created prior to executing the agent, in the format specified by the timestamp-format meta-attribute. This allows the agent to have a reliable, high-precision time of when the event occurred, regardless of when the agent itself was invoked (which could potentially be delayed due to system load, etc.).
						

						
	
						
							CRM_alert_timestamp_epoch
						

							
						
							The same time as CRM_alert_timestamp, expressed as the integer number of seconds since January 1, 1970. This (along with CRM_alert_timestamp_usec) can be useful for alert agents that need to format time in a specific way rather than let the user configure it.
						

						
	
						
							CRM_alert_timestamp_usec
						

							
						
							The same time as CRM_alert_timestamp, expressed as the integer number of microseconds since CRM_alert_timestamp_epoch.
						

						
	
						
							CRM_alert_node
						

							
						
							Name of affected node
						

						
	
						
							CRM_alert_desc
						

							
						
							Detail about event. For node alerts, this is the node’s current state (member or lost). For fencing alerts, this is a summary of the requested fencing operation, including origin, target, and fencing operation error code, if any. For resource alerts, this is a readable string equivalent of CRM_alert_status.
						

						
	
						
							CRM_alert_nodeid
						

							
						
							ID of node whose status changed (provided with node alerts only)
						

						
	
						
							CRM_alert_task
						

							
						
							The requested fencing or resource operation (provided with fencing and resource alerts only)
						

						
	
						
							CRM_alert_rc
						

							
						
							The numerical return code of the fencing or resource operation (provided with fencing and resource alerts only)
						

						
	
						
							CRM_alert_rsc
						

							
						
							The name of the affected resource (resource alerts only)
						

						
	
						
							CRM_alert_interval
						

							
						
							The interval of the resource operation (resource alerts only)
						

						
	
						
							CRM_alert_target_rc
						

							
						
							The expected numerical return code of the operation (resource alerts only)
						

						
	
						
							CRM_alert_status
						

							
						
							A numerical code used by Pacemaker to represent the operation result (resource alerts only)
						

						
	
						
							CRM_alert_exec_time
						

							
						
							The (wall-clock) time, in milliseconds, that it took to execute the action. If the action timed out, CRM_alert_status will be 2, CRM_alert_desc will be "Timed Out", and this value will be the action timeout. May not be supported on all platforms. (resource alerts only)
						

						
	
						
							CRM_alert_attribute_name
						

							
						
							The name of the node attribute that changed (attribute alerts only)
						

						
	
						
							CRM_alert_attribute_value
						

							
						
							The new value of the node attribute that changed (attribute alerts only)
						

						

			Special concerns when writing alert agents:
		
	
					Alert agents may be called with no recipient (if none is configured), so the agent must be able to handle this situation, even if it only exits in that case. (Users may modify the configuration in stages, and add a recipient later.)
				

	
					If more than one recipient is configured for an alert, the alert agent will be called once per recipient. If an agent is not able to run concurrently, it should be configured with only a single recipient. The agent is free, however, to interpret the recipient as a list.
				

	
					When a cluster event occurs, all alerts are fired off at the same time as separate processes. Depending on how many alerts and recipients are configured, and on what is done within the alert agents, a significant load burst may occur. The agent could be written to take this into consideration, for example by queueing resource-intensive actions into some other instance, instead of directly executing them.
				

	
					Alert agents are run as the hacluster user, which has a minimal set of permissions. If an agent requires additional privileges, it is recommended to configure sudo to allow the agent to run the necessary commands as another user with the appropriate privileges.
				

	
					As always, take care to validate and sanitize user-configured parameters, such as CRM_alert_timestamp (whose content is specified by the user-configured timestamp-format), CRM_alert_recipient, and all instance attributes. Mostly this is needed simply to protect against configuration errors, but if some user can modify the CIB without having hacluster-level access to the cluster nodes, it is a potential security concern as well, to avoid the possibility of code injection.
				

Note

				The alerts interface is designed to be backward compatible with the external scripts interface used by the ocf:pacemaker:ClusterMon resource, which is now deprecated. To preserve this compatibility, the environment variables passed to alert agents are available prepended with CRM_notify_ as well as CRM_alert_. One break in compatibility is that ClusterMon ran external scripts as the root user, while alert agents are run as the hacluster user.
			

 ⁠Chapter 8. Rules

		
 ⁠
	

		Rules can be used to make your configuration more dynamic, allowing values to change depending on the time or the value of a node attribute. Examples of things rules are useful for:
	
	
				Set a higher value for resource-stickiness during working hours, to minimize downtime, and a lower value on weekends, to allow resources to move to their most preferred locations when people aren’t around to notice.
			

	
				Automatically place the cluster into maintenance mode during a scheduled maintenance window.
			

	
				Assign certain nodes and resources to a particular department via custom node attributes and meta-attributes, and add a single location constraint that restricts the department’s resources to run only on those nodes.
			

		Each constraint type or property set that supports rules may contain one or more rule elements specifying conditions under which the constraint or properties take effect. Examples later in this section will make this clearer.
	

 ⁠8.1. Rule Properties

			
		

 ⁠Table 8.1. Attributes of a rule Element
	Attribute	Default	Description
	
						
							id
						

							
						
						

							
						
							A unique name for the rule (required)
						

						
	
						
							role
						

							
						
							Started
						

							
						
							The rule is in effect only when the resource is in the specified role. Allowed values are Started, Slave, and Master. A rule with role="Master" cannot determine the initial location of a clone instance and will only affect which of the active instances will be promoted.
						

						
	
						
							score
						

							
						
						

							
						
							If this rule is used in a location constraint and evaluates to true, apply this score to the constraint. Only one of score and score-attribute may be used.
						

						
	
						
							score-attribute
						

							
						
						

							
						
							If this rule is used in a location constraint and evaluates to true, use the value of this node attribute as the score to apply to the constraint. Only one of score and score-attribute may be used.
						

						
	
						
							boolean-op
						

							
						
							and
						

							
						
							If this rule contains more than one condition, a value of and specifies that the rule evaluates to true only if all conditions are true, and a value of or specifies that the rule evaluates to true if any condition is true.
						

						

			A rule element must contain one or more conditions. A condition may be an expression element, a date_expression element, or another rule element.
		

 ⁠8.2. Node Attribute Expressions

 ⁠
			
		

			Expressions are rule conditions based on the values of node attributes.
		

 ⁠Table 8.2. Attributes of an expression Element
	Field	Default	Description
	
						
							id
						

							
						
						

							
						
							A unique name for the expression (required)
						

						
	
						
							attribute
						

							
						
						

							
						
							The node attribute to test (required)
						

						
	
						
							type
						

							
						
							The default type for lt, gt, lte, and gte operations is number if either value contains a decimal point character, or integer otherwise. The default type for all other operations is string. If a numeric parse fails for either value, then the values compared as type string.
						

							
						
							How the node attributes should be compared. Allowed values are string, integer, number, and version. integer truncates floating-point values if necessary before performing an integer comparison. number performs a floating-point comparison.
						

						
	
						
							operation
						

							
						
						

							
						
							The comparison to perform (required). Allowed values:
						

							
									lt: True if the node attribute value is less than the comparison value
								

	
									gt: True if the node attribute value is greater than the comparison value
								

	
									lte: True if the node attribute value is less than or equal to the comparison value
								

	
									gte: True if the node attribute value is greater than or equal to the comparison value
								

	
									eq: True if the node attribute value is equal to the comparison value
								

	
									ne: True if the node attribute value is not equal to the comparison value
								

	
									defined: True if the node has the named attribute
								

	
									not_defined: True if the node does not have the named attribute
								

						
	
						
							value
						

							
						
						

							
						
							User-supplied value for comparison (required for operations other than defined and not_defined)
						

						
	
						
							value-source
						

							
						
							literal
						

							
						
							How the value is derived. Allowed values:
						

							
									literal: value is a literal string to compare against
								

	
									param: value is the name of a resource parameter to compare against (only valid in location constraints)
								

	
									meta: value is the name of a resource meta-attribute to compare against (only valid in location constraints)
								

						

 ⁠
			In addition to custom node attributes defined by the administrator, the cluster defines special, built-in node attributes for each node that can also be used in rule expressions.
		

 ⁠Table 8.3. Built-in Node Attributes
	Name	Value
	
						
							#uname
						

							
						
							Node name
						

						
	
						
							#id
						

							
						
							Node ID
						

						
	
						
							#kind
						

							
						
							Node type. Possible values are cluster, remote, and container. Kind is remote for Pacemaker Remote nodes created with the ocf:pacemaker:remote resource, and container for Pacemaker Remote guest nodes and bundle nodes
						

						
	
						
							#is_dc
						

							
						
							"true" if this node is a Designated Controller (DC), "false" otherwise
						

						
	
						
							#cluster-name
						

							
						
							The value of the cluster-name cluster property, if set
						

						
	
						
							#site-name
						

							
						
							The value of the site-name node attribute, if set, otherwise identical to #cluster-name
						

						
	
						
							#role
						

							
						
							The role the relevant promotable clone resource has on this node. Valid only within a rule for a location constraint for a promotable clone resource.
						

						

 ⁠8.3. Date/Time Expressions

			
		

			Date/time expressions are rule conditions based (as the name suggests) on the current date and time.
		

			A date_expression element may optionally contain a date_spec or duration element depending on the context.
		

 ⁠Table 8.4. Attributes of a date_expression Element
	Field	Description
	
						
							id
						

							
						
							A unique name for the expression (required)
						

						
	
						
							start
						

							
						
							A date/time conforming to the ISO8601 specification. May be used when operation is in_range (in which case at least one of start or end must be specified) or gt (in which case start is required).
						

						
	
						
							end
						

							
						
							A date/time conforming to the ISO8601 specification. May be used when operation is in_range (in which case at least one of start or end must be specified) or lt (in which case end is required).
						

						
	
						
							operation
						

							
						
							Compares the current date/time with the start and/or end date, depending on the context. Allowed values:
						

							
									gt: True if the current date/time is after start
								

	
									lt: True if the current date/time is before end
								

	
									in_range: True if the current date/time is after start (if specified) and before either end (if specified) or start plus the value of the duration element (if one is contained in the date_expression)
								

	
									date_spec: True if the current date/time matches the specification given in the contained date_spec element (described below)
								

						

Note

				There is no eq, neq, gte, or lte operation, since they would be valid only for a single second.
			

 ⁠8.3.1. Date Specifications

				
			

				A date_spec element is used to create a cron-like expression relating to time. Each field can contain a single number or range. Any field not supplied is ignored.
			

 ⁠Table 8.5. Attributes of a date_spec Element
	Field	Description
	
							
								id
							

								
							
								A unique name for the object (required)
							

							
	
							
								hours
							

								
							
								Allowed values: 0-23 (where 0 is midnight and 23 is 11 p.m.)
							

							
	
							
								monthdays
							

								
							
								Allowed values: 1-31 (depending on month and year)
							

							
	
							
								weekdays
							

								
							
								Allowed values: 1-7 (where 1 is Monday and 7 is Sunday)
							

							
	
							
								yeardays
							

								
							
								Allowed values: 1-366 (depending on the year)
							

							
	
							
								months
							

								
							
								Allowed values: 1-12
							

							
	
							
								weeks
							

								
							
								Allowed values: 1-53 (depending on weekyear)
							

							
	
							
								years
							

								
							
								Year according to the Gregorian calendar
							

							
	
							
								weekyears
							

								
							
								Year in which the week started; for example, 1 January 2005 can be specified in ISO 8601 as 2005-001 Ordinal, 2005-01-01 Gregorian or 2004-W53-6 Weekly and thus would match years="2005" or weekyears="2004"
							

							
	
							
								moon
							

								
							
								Allowed values are 0-7 (where 0 is the new moon and 4 is full moon). Seriously, you can use this. This was implemented to demonstrate the ease with which new comparisons could be added.
							

							

				For example, monthdays="1" matches the first day of every month, and hours="09-17" matches the hours between 9 a.m. and 5 p.m. (inclusive).
			

				At this time, multiple ranges (e.g. weekdays="1,2" or weekdays="1-2,5-6") are not supported.
			
Note

					Pacemaker can calculate when evaluation of a date_expression with an operation of gt, lt, or in_range will next change, and schedule a cluster re-check for that time. However, it does not do this for date_spec. Instead, it evaluates the date_spec whenever a cluster re-check naturally happens via a cluster event or the cluster-recheck-interval cluster option. For example, if you have a date_spec enabling a resource from 9 a.m. to 5 p.m., and cluster-recheck-interval has been set to 5 minutes, then sometime between 9 a.m. and 9:05 a.m. the cluster would notice that it needs to start the resource, and sometime between 5 p.m. and 5:05 p.m. it would realize that it needs to stop the resource. The timing of the actual start and stop actions will further depend on factors such as any other actions the cluster may need to perform first, and the load of the machine.
				

 ⁠8.3.2. Durations

				
			

				A duration is used to calculate a value for end when one is not supplied to in_range operations. It contains one or more attributes each containing a single number. Any attribute not supplied is ignored.
			

 ⁠Table 8.6. Attributes of a duration Element
	Field	Description
	
							
								id
							

								
							
								A unique name for this duration element (required)
							

							
	
							
								seconds
							

								
							
								This many seconds will be added to the total duration
							

							
	
							
								minutes
							

								
							
								This many minutes will be added to the total duration
							

							
	
							
								hours
							

								
							
								This many hours will be added to the total duration
							

							
	
							
								weeks
							

								
							
								This many weeks will be added to the total duration
							

							
	
							
								months
							

								
							
								This many months will be added to the total duration
							

							
	
							
								years
							

								
							
								This many years will be added to the total duration
							

							

 ⁠8.3.3. Example Time-Based Expressions

				A small sample of how time-based expressions can be used:
			

 ⁠Example 8.1. True if now is any time in the year 2005
​<rule id="rule1" score="INFINITY">
​ <date_expression id="date_expr1" start="2005-001" operation="in_range">
​ <duration id="duration1" years="1"/>
​ </date_expression>
​</rule>

 ⁠Example 8.2. Equivalent expression
​<rule id="rule2" score="INFINITY">
​ <date_expression id="date_expr2" operation="date_spec">
​ <date_spec id="date_spec2" years="2005"/>
​ </date_expression>
​</rule>

 ⁠Example 8.3. 9am-5pm Monday-Friday
​<rule id="rule3" score="INFINITY">
​ <date_expression id="date_expr3" operation="date_spec">
​ <date_spec id="date_spec3" hours="9-16" weekdays="1-5"/>
​ </date_expression>
​</rule>

				Please note that the 16 matches up to 16:59:59, as the numeric value (hour) still matches!
			

 ⁠Example 8.4. 9am-6pm Monday through Friday or anytime Saturday
​<rule id="rule4" score="INFINITY" boolean-op="or">
​ <date_expression id="date_expr4-1" operation="date_spec">
​ <date_spec id="date_spec4-1" hours="9-16" weekdays="1-5"/>
​ </date_expression>
​ <date_expression id="date_expr4-2" operation="date_spec">
​ <date_spec id="date_spec4-2" weekdays="6"/>
​ </date_expression>
​</rule>

 ⁠Example 8.5. 9am-5pm or 9pm-12am Monday through Friday
​<rule id="rule5" score="INFINITY" boolean-op="and">
​ <rule id="rule5-nested1" score="INFINITY" boolean-op="or">
​ <date_expression id="date_expr5-1" operation="date_spec">
​ <date_spec id="date_spec5-1" hours="9-16"/>
​ </date_expression>
​ <date_expression id="date_expr5-2" operation="date_spec">
​ <date_spec id="date_spec5-2" hours="21-23"/>
​ </date_expression>
​ </rule>
​ <date_expression id="date_expr5-3" operation="date_spec">
​ <date_spec id="date_spec5-3" weekdays="1-5"/>
​ </date_expression>
​</rule>

 ⁠Example 8.6. Mondays in March 2005
​<rule id="rule6" score="INFINITY" boolean-op="and">
​ <date_expression id="date_expr6-1" operation="date_spec">
​ <date_spec id="date_spec6" weekdays="1"/>
​ </date_expression>
​ <date_expression id="date_expr6-2" operation="in_range"
​ start="2005-03-01" end="2005-04-01"/>
​</rule>

Note

					Because no time is specified with the above dates, 00:00:00 is implied. This means that the range includes all of 2005-03-01 but none of 2005-04-01. You may wish to write end="2005-03-31T23:59:59" to avoid confusion.
				

 ⁠Example 8.7. A full moon on Friday the 13th
​<rule id="rule7" score="INFINITY" boolean-op="and">
​ <date_expression id="date_expr7" operation="date_spec">
​ <date_spec id="date_spec7" weekdays="5" monthdays="13" moon="4"/>
​ </date_expression>
​</rule>

 ⁠8.4. Resource Expressions

			An rsc_expression is a rule condition based on a resource agent’s properties. This rule is only valid within an rsc_defaults or op_defaults context. None of the matching attributes of class, provider, and type are required. If one is omitted, all values of that attribute will match. For instance, omitting type means every type will match.
		

 ⁠Table 8.7. Attributes of an rsc_expression Element
	Field	Description
	
						
							id
						

							
						
							A unique name for the expression (required)
						

						
	
						
							class
						

							
						
							The standard name to be matched against resource agents
						

						
	
						
							provider
						

							
						
							If given, the vendor to be matched against resource agents. This only makes sense for agents using the OCF spec.
						

						
	
						
							type
						

							
						
							The name of the resource agent to be matched
						

						

 ⁠8.4.1. Example Resource-Based Expressions

				A small sample of how resource-based expressions can be used:
			

 ⁠Example 8.8. True for all ocf:heartbeat:IPaddr2 resources
​<rule id="rule1" score="INFINITY">
​ <rsc_expression id="rule_expr1" class="ocf" provider="heartbeat" type="IPaddr2"/>
​</rule>

 ⁠Example 8.9. Provider doesn’t apply to non-OCF resources
​<rule id="rule2" score="INFINITY">
​ <rsc_expression id="rule_expr2" class="stonith" type="fence_xvm"/>
​</rule>

 ⁠8.5. Operation Expressions

			An op_expression is a rule condition based on an action of some resource agent. This rule is only valid within an op_defaults context.
		

 ⁠Table 8.8. Attributes of an op_expression Element
	Field	Description
	
						
							id
						

							
						
							A unique name for the expression (required)
						

						
	
						
							name
						

							
						
							The action name to match against. This can be any action supported by the resource agent; common values include monitor, start, and stop (required).
						

						
	
						
							interval
						

							
						
							The interval of the action to match against. If not given, only the name attribute will be used to match.
						

						

 ⁠8.5.1. Example Operation-Based Expressions

				A small sample of how operation-based expressions can be used:
			

 ⁠Example 8.10. True for all monitor actions
​<rule id="rule1" score="INFINITY">
​ <op_expression id="rule_expr1" name="monitor"/>
​</rule>

 ⁠Example 8.11. True for all monitor actions with a 10 second interval
​<rule id="rule2" score="INFINITY">
​ <op_expression id="rule_expr2" name="monitor" interval="10s"/>
​</rule>

 ⁠8.6. Using Rules to Determine Resource Location

			
		

			A location constraint may contain one or more top-level rules. The cluster will act as if there is a separate location constraint for each rule that evaluates as true.
		

			Consider the following simple location constraint:
		

 ⁠Example 8.12. Prevent resource "webserver" from running on node3
​<rsc_location id="ban-apache-on-node3" rsc="webserver"
​ score="-INFINITY" node="node3"/>

			The constraint can be more verbosely written using a rule:
		

 ⁠Example 8.13. Prevent resource "webserver" from running on node3 using rule
​<rsc_location id="ban-apache-on-node3" rsc="webserver">
​ <rule id="ban-apache-rule" score="-INFINITY">
​ <expression id="ban-apache-expr" attribute="#uname"
​ operation="eq" value="node3"/>
​ </rule>
​</rsc_location>

			The advantage of using the expanded form is that one could add more expressions (for example, limiting the constraint to certain days of the week), or activate the constraint by some node attribute other than node name.
		

 ⁠8.6.1. Location Rules Based on Other Node Properties

				The expanded form allows us to match on node properties other than its name. If we rated each machine’s CPU power such that the cluster had the following nodes section:
			

 ⁠Example 8.14. A sample nodes section for use with score-attribute
​<nodes>
​ <node id="uuid1" uname="c001n01" type="normal">
​ <instance_attributes id="uuid1-custom_attrs">
​ <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>
​ </instance_attributes>
​ </node>
​ <node id="uuid2" uname="c001n02" type="normal">
​ <instance_attributes id="uuid2-custom_attrs">
​ <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>
​ </instance_attributes>
​ </node>
​</nodes>

				then we could prevent resources from running on underpowered machines with this rule:
			
​<rule id="need-more-power-rule" score="-INFINITY">
​ <expression id="need-more-power-expr" attribute="cpu_mips"
​ operation="lt" value="3000"/>
​</rule>

 ⁠8.6.2. Using score-attribute Instead of score

				When using score-attribute instead of score, each node matched by the rule has its score adjusted differently, according to its value for the named node attribute. Thus, in the previous example, if a rule used score-attribute="cpu_mips", c001n01 would have its preference to run the resource increased by 1234 whereas c001n02 would have its preference increased by 5678.
			

 ⁠8.7. Using Rules to Define Options

			Rules may be used to control a variety of options:
		
	
					Cluster options (cluster_property_set elements)
				

	
					Node attributes (as instance_attributes or utilization elements inside a node element)
				

	
					Resource options (as utilization, meta_attributes, or instance_attributes elements inside a resource definition element or op , rsc_defaults, op_defaults, or template element)
				

	
					Operation properties (meta_attributes inside an op or op_defaults element)
				

 ⁠8.7.1. Using Rules to Control Resource Options

				Often some cluster nodes will be different from their peers. Sometimes, these differences — e.g. the location of a binary or the names of network interfaces — require resources to be configured differently depending on the machine they’re hosted on.
			

				By defining multiple instance_attributes objects for the resource and adding a rule to each, we can easily handle these special cases.
			

				In the example below, mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port 8888 on node2 and default to eth0 and port 9999 for all other nodes.
			

 ⁠Example 8.15. Defining different resource options based on the node name
​<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
​ <instance_attributes id="special-node1" score="3">
​ <rule id="node1-special-case" score="INFINITY" >
​ <expression id="node1-special-case-expr" attribute="#uname"
​ operation="eq" value="node1"/>
​ </rule>
​ <nvpair id="node1-interface" name="interface" value="eth1"/>
​ </instance_attributes>
​ <instance_attributes id="special-node2" score="2" >
​ <rule id="node2-special-case" score="INFINITY">
​ <expression id="node2-special-case-expr" attribute="#uname"
​ operation="eq" value="node2"/>
​ </rule>
​ <nvpair id="node2-interface" name="interface" value="eth2"/>
​ <nvpair id="node2-port" name="port" value="8888"/>
​ </instance_attributes>
​ <instance_attributes id="defaults" score="1" >
​ <nvpair id="default-interface" name="interface" value="eth0"/>
​ <nvpair id="default-port" name="port" value="9999"/>
​ </instance_attributes>
​</primitive>

				The order in which instance_attributes objects are evaluated is determined by their score (highest to lowest). If not supplied, score defaults to zero, and objects with an equal score are processed in listed order. If the instance_attributes object has no rule or a rule that evaluates to true, then for any parameter the resource does not yet have a value for, the resource will use the parameter values defined by the instance_attributes.
			

				For example, given the configuration above, if the resource is placed on node1:
			
	
						special-node1 has the highest score (3) and so is evaluated first; its rule evaluates to true, so interface is set to eth1.
					

	
						special-node2 is evaluated next with score 2, but its rule evaluates to false, so it is ignored.
					

	
						defaults is evaluated last with score 1, and has no rule, so its values are examined; interface is already defined, so the value here is not used, but port is not yet defined, so port is set to 9999.
					

 ⁠8.7.2. Using Rules to Control Resource Defaults

				Rules can be used for resource and operation defaults. The following example illustrates how to set a different resource-stickiness value during and outside work hours. This allows resources to automatically move back to their most preferred hosts, but at a time that (in theory) does not interfere with business activities.
			

 ⁠Example 8.16. Change resource-stickiness during working hours
​<rsc_defaults>
​ <meta_attributes id="core-hours" score="2">
​ <rule id="core-hour-rule" score="0">
​ <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
​ <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/>
​ </date_expression>
​ </rule>
​ <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>
​ </meta_attributes>
​ <meta_attributes id="after-hours" score="1" >
​ <nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
​ </meta_attributes>
​</rsc_defaults>

				Rules may be used similarly in instance_attributes or utilization blocks.
			

				Any single block may directly contain only a single rule, but that rule may itself contain any number of rules.
			

				rsc_expression and op_expression blocks may additionally be used to set defaults on either a single resource or across an entire class of resources with a single rule. rsc_expression may be used to select resource agents within both rsc_defaults and op_defaults, while op_expression may only be used within op_defaults. If multiple rules succeed for a given resource agent, the last one specified will be the one that takes effect. As with any other rule, boolean operations may be used to make more complicated expressions.
			

 ⁠Example 8.17. Set all IPaddr2 resources to stopped
​<rsc_defaults>
​ <meta_attributes id="op-target-role">
​ <rule id="op-target-role-rule" score="INFINITY">
​ <rsc_expression id="op-target-role-expr" class="ocf" provider="heartbeat"
​ type="IPaddr2"/>
​ </rule>
​ <nvpair id="op-target-role-nvpair" name="target-role" value="Stopped"/>
​ </meta_attributes>
​</rsc_defaults>

 ⁠Example 8.18. Set all monitor action timeouts to 7 seconds
​<op_defaults>
​ <meta_attributes id="op-monitor-defaults">
​ <rule id="op-monitor-default-rule" score="INFINITY">
​ <op_expression id="op-monitor-default-expr" name="monitor"/>
​ </rule>
​ <nvpair id="op-monitor-timeout" name="timeout" value="7s"/>
​ </meta_attributes>
​</op_defaults>

 ⁠Example 8.19. Set the monitor action timeout on all IPaddr2 resources with a given monitor interval to 8 seconds
​<op_defaults>
​ <meta_attributes id="op-monitor-and">
​ <rule id="op-monitor-and-rule" score="INFINITY">
​ <rsc_expression id="op-monitor-and-rsc-expr" class="ocf" provider="heartbeat"
​ type="IPaddr2"/>
​ <op_expression id="op-monitor-and-op-expr" name="monitor" interval="10s"/>
​ </rule>
​ <nvpair id="op-monitor-and-timeout" name="timeout" value="8s"/>
​ </meta_attributes>
​</op_defaults>

 ⁠8.7.3. Using Rules to Control Cluster Options

				
			

				Controlling cluster options is achieved in much the same manner as specifying different resource options on different nodes.
			

				The difference is that because they are cluster options, one cannot (or should not, because they won’t work) use attribute-based expressions. The following example illustrates how to set maintenance_mode during a scheduled maintenance window. This will keep the cluster running but not monitor, start, or stop resources during this time.
			

 ⁠Example 8.20. Schedule a maintenance window for 9 to 11 p.m. CDT Sept. 20, 2019
​<crm_config>
​ <cluster_property_set id="cib-bootstrap-options">
​ <nvpair id="bootstrap-stonith-enabled" name="stonith-enabled" value="1"/>
​ </cluster_property_set>
​ <cluster_property_set id="normal-set" score="10">
​ <nvpair id="normal-maintenance-mode" name="maintenance-mode" value="false"/>
​ </cluster_property_set>
​ <cluster_property_set id="maintenance-window-set" score="1000">
​ <nvpair id="maintenance-nvpair1" name="maintenance-mode" value="true"/>
​ <rule id="maintenance-rule1" score="INFINITY">
​ <date_expression id="maintenance-date1" operation="in_range"
​ start="2019-09-20 21:00:00 -05:00" end="2019-09-20 23:00:00 -05:00"/>
​ </rule>
​ </cluster_property_set>
​</crm_config>

Important

					The cluster_property_set with an id set to "cib-bootstrap-options" will always have the highest priority, regardless of any scores. Therefore, rules in another cluster_property_set can never take effect for any properties listed in the bootstrap set.
				

 ⁠Chapter 9. Advanced Configuration

 ⁠9.1. Specifying When Recurring Actions are Performed

			By default, recurring actions are scheduled relative to when the resource started. So if your resource was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup will always run in the middle of the business day — hardly desirable.
		

			To specify a date and time that the operation should be relative to, set the operation’s interval-origin. The cluster uses this point to calculate the correct start-delay such that the operation will occur at origin + (interval * N).
		

			So, if the operation’s interval is 24h, its interval-origin is set to 02:00 and it is currently 14:32, then the cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is moved to another node before 2am, then the operation is cancelled.
		

			The value specified for interval and interval-origin can be any date/time conforming to the ISO8601 standard. By way of example, to specify an operation that would run on the first Monday of 2009 and every Monday after that, you would add:
		

 ⁠Example 9.1. Specifying a Base for Recurring Action Intervals
​<op id="my-weekly-action" name="custom-action" interval="P7D" interval-origin="2009-W01-1"/>

 ⁠9.2. Handling Resource Failure

			By default, Pacemaker will attempt to recover failed resources by restarting them. However, failure recovery is highly configurable.
		

 ⁠9.2.1. Failure Counts

				Pacemaker tracks resource failures for each combination of node, resource, and operation (start, stop, monitor, etc.).
			

				You can query the fail count for a particular node, resource, and/or operation using the crm_failcount command. For example, to see how many times the 10-second monitor for myrsc has failed on node1, run:
			
crm_failcount --query -r myrsc -N node1 -n monitor -I 10s

				If you omit the node, crm_failcount will use the local node. If you omit the operation and interval, crm_failcount will display the sum of the fail counts for all operations on the resource.
			

				You can use crm_resource --cleanup or crm_failcount --delete to clear fail counts. For example, to clear the above monitor failures, run:
			
crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s

				If you omit the resource, crm_resource --cleanup will clear failures for all resources. If you omit the node, it will clear failures on all nodes. If you omit the operation and interval, it will clear the failures for all operations on the resource.
			
Note

					Even when cleaning up only a single operation, all failed operations will disappear from the status display. This allows us to trigger a re-check of the resource’s current status.
				

				Higher-level tools may provide other commands for querying and clearing fail counts.
			

				The crm_mon tool shows the current cluster status, including any failed operations. To see the current fail counts for any failed resources, call crm_mon with the --failcounts option. This shows the fail counts per resource (that is, the sum of any operation fail counts for the resource).
			

 ⁠9.2.2. Failure Response

				Normally, if a running resource fails, pacemaker will try to stop it and start it again. Pacemaker will choose the best location to start it each time, which may be the same node that it failed on.
			

				However, if a resource fails repeatedly, it is possible that there is an underlying problem on that node, and you might desire trying a different node in such a case. Pacemaker allows you to set your preference via the migration-threshold resource meta-attribute.
 ⁠[13]
			

				If you define migration-threshold=N for a resource, it will be banned from the original node after N failures.
			
Note

					The migration-threshold is per resource, even though fail counts are tracked per operation. The operation fail counts are added together to compare against the migration-threshold.
				

				By default, fail counts remain until manually cleared by an administrator using crm_resource --cleanup or crm_failcount --delete (hopefully after first fixing the failure’s cause). It is possible to have fail counts expire automatically by setting the failure-timeout resource meta-attribute.
			
Important

					A successful operation does not clear past failures. If a recurring monitor operation fails once, succeeds many times, then fails again days later, its fail count is 2. Fail counts are cleared only by manual intervention or falure timeout.
				

				For example, a setting of migration-threshold=2 and failure-timeout=60s would cause the resource to move to a new node after 2 failures, and allow it to move back (depending on stickiness and constraint scores) after one minute.
			
Note

					failure-timeout is measured since the most recent failure. That is, older failures do not individually time out and lower the fail count. Instead, all failures are timed out simultaneously (and the fail count is reset to 0) if there is no new failure for the timeout period.
				

				There are two exceptions to the migration threshold concept: when a resource either fails to start or fails to stop.
			

				If the cluster property start-failure-is-fatal is set to true (which is the default), start failures cause the fail count to be set to INFINITY and thus always cause the resource to move immediately.
			

				Stop failures are slightly different and crucial. If a resource fails to stop and STONITH is enabled, then the cluster will fence the node in order to be able to start the resource elsewhere. If STONITH is not enabled, then the cluster has no way to continue and will not try to start the resource elsewhere, but will try to stop it again after the failure timeout.
			

 ⁠9.3. Moving Resources

			
		

 ⁠9.3.1. Moving Resources Manually

				There are primarily two occasions when you would want to move a resource from its current location: when the whole node is under maintenance, and when a single resource needs to be moved.
			

 ⁠9.3.1.1. Standby Mode

					Since everything eventually comes down to a score, you could create constraints for every resource to prevent them from running on one node. While pacemaker configuration can seem convoluted at times, not even we would require this of administrators.
				

					Instead, one can set a special node attribute which tells the cluster "don’t let anything run here". There is even a helpful tool to help query and set it, called crm_standby. To check the standby status of the current machine, run:
				
crm_standby -G

					A value of on indicates that the node is not able to host any resources, while a value of off says that it can.
				

					You can also check the status of other nodes in the cluster by specifying the --node option:
				
crm_standby -G --node sles-2

					To change the current node’s standby status, use -v instead of -G:
				
crm_standby -v on

					Again, you can change another host’s value by supplying a hostname with --node.
				

					A cluster node in standby mode will not run resources, but still contributes to quorum, and may fence or be fenced by nodes.
				

 ⁠9.3.1.2. Moving One Resource

					When only one resource is required to move, we could do this by creating location constraints. However, once again we provide a user-friendly shortcut as part of the crm_resource command, which creates and modifies the extra constraints for you. If Email were running on sles-1 and you wanted it moved to a specific location, the command would look something like:
				
crm_resource -M -r Email -H sles-2

					Behind the scenes, the tool will create the following location constraint:
				
​<rsc_location rsc="Email" node="sles-2" score="INFINITY"/>

					It is important to note that subsequent invocations of crm_resource -M are not cumulative. So, if you ran these commands
				
crm_resource -M -r Email -H sles-2
crm_resource -M -r Email -H sles-3

					then it is as if you had never performed the first command.
				

					To allow the resource to move back again, use:
				
crm_resource -U -r Email

					Note the use of the word allow. The resource can move back to its original location but, depending on resource-stickiness, it might stay where it is. To be absolutely certain that it moves back to sles-1, move it there before issuing the call to crm_resource -U:
				
crm_resource -M -r Email -H sles-1
crm_resource -U -r Email

					Alternatively, if you only care that the resource should be moved from its current location, try:
				
crm_resource -B -r Email

					Which will instead create a negative constraint, like
				
​<rsc_location rsc="Email" node="sles-1" score="-INFINITY"/>

					This will achieve the desired effect, but will also have long-term consequences. As the tool will warn you, the creation of a -INFINITY constraint will prevent the resource from running on that node until crm_resource -U is used. This includes the situation where every other cluster node is no longer available!
				

					In some cases, such as when resource-stickiness is set to INFINITY, it is possible that you will end up with the problem described in Section 5.2.4, “What if Two Nodes Have the Same Score”. The tool can detect some of these cases and deals with them by creating both positive and negative constraints. E.g.
				

					Email prefers sles-1 with a score of -INFINITY
				

					Email prefers sles-2 with a score of INFINITY
				

					which has the same long-term consequences as discussed earlier.
				

 ⁠9.3.2. Moving Resources Due to Connectivity Changes

				You can configure the cluster to move resources when external connectivity is lost in two steps.
			

 ⁠9.3.2.1. Tell Pacemaker to Monitor Connectivity

					First, add an ocf:pacemaker:ping resource to the cluster. The ping resource uses the system utility of the same name to a test whether list of machines (specified by DNS hostname or IPv4/IPv6 address) are reachable and uses the results to maintain a node attribute called pingd by default.
 ⁠[14]
				
Note

						Older versions of Pacemaker used a different agent ocf:pacemaker:pingd which is now deprecated in favor of ping. If your version of Pacemaker does not contain the ping resource agent, download the latest version from https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping
					

					Normally, the ping resource should run on all cluster nodes, which means that you’ll need to create a clone. A template for this can be found below along with a description of the most interesting parameters.
				

 ⁠Table 9.1. Common Options for a ping Resource
	Field	Description
	
								
									dampen
								

									
								
									The time to wait (dampening) for further changes to occur. Use this to prevent a resource from bouncing around the cluster when cluster nodes notice the loss of connectivity at slightly different times.
								

								
	
								
									multiplier
								

									
								
									The number of connected ping nodes gets multiplied by this value to get a score. Useful when there are multiple ping nodes configured.
								

								
	
								
									host_list
								

									
								
									The machines to contact in order to determine the current connectivity status. Allowed values include resolvable DNS host names, IPv4 and IPv6 addresses.
								

								

 ⁠Example 9.2. An example ping cluster resource that checks node connectivity once every minute
​<clone id="Connected">
​ <primitive id="ping" provider="pacemaker" class="ocf" type="ping">
​ <instance_attributes id="ping-attrs">
​ <nvpair id="pingd-dampen" name="dampen" value="5s"/>
​ <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
​ <nvpair id="pingd-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>
​ </instance_attributes>
​ <operations>
​ <op id="ping-monitor-60s" interval="60s" name="monitor"/>
​ </operations>
​ </primitive>
​</clone>

Important

						You’re only half done. The next section deals with telling Pacemaker how to deal with the connectivity status that ocf:pacemaker:ping is recording.
					

 ⁠9.3.2.2. Tell Pacemaker How to Interpret the Connectivity Data

Important

						Before attempting the following, make sure you understand Chapter 8, Rules.
					

					There are a number of ways to use the connectivity data.
				

					The most common setup is for people to have a single ping target (e.g. the service network’s default gateway), to prevent the cluster from running a resource on any unconnected node.
				

 ⁠Example 9.3. Don’t run a resource on unconnected nodes
​<rsc_location id="WebServer-no-connectivity" rsc="Webserver">
​ <rule id="ping-exclude-rule" score="-INFINITY" >
​ <expression id="ping-exclude" attribute="pingd" operation="not_defined"/>
​ </rule>
​</rsc_location>

					A more complex setup is to have a number of ping targets configured. You can require the cluster to only run resources on nodes that can connect to all (or a minimum subset) of them.
				

 ⁠Example 9.4. Run only on nodes connected to three or more ping targets.
​<primitive id="ping" provider="pacemaker" class="ocf" type="ping">
​... <!-- omitting some configuration to highlight important parts -->
​ <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
​...
​</primitive>
​...
​<rsc_location id="WebServer-connectivity" rsc="Webserver">
​ <rule id="ping-prefer-rule" score="-INFINITY" >
​ <expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>
​ </rule>
​</rsc_location>

					Alternatively, you can tell the cluster only to prefer nodes with the best connectivity. Just be sure to set multiplier to a value higher than that of resource-stickiness (and don’t set either of them to INFINITY).
				

 ⁠Example 9.5. Prefer the node with the most connected ping nodes
​<rsc_location id="WebServer-connectivity" rsc="Webserver">
​ <rule id="ping-prefer-rule" score-attribute="pingd" >
​ <expression id="ping-prefer" attribute="pingd" operation="defined"/>
​ </rule>
​</rsc_location>

					It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into. For example, if sles-1 is connected to all five ping nodes but sles-2 is only connected to two, then it would be as if you instead had the following constraints in your configuration:
				

 ⁠Example 9.6. How the cluster translates the above location constraint
​<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
​<rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>

					The advantage is that you don’t have to manually update any constraints whenever your network connectivity changes.
				

					You can also combine the concepts above into something even more complex. The example below shows how you can prefer the node with the most connected ping nodes provided they have connectivity to at least three (again assuming that multiplier is set to 1000).
				

 ⁠Example 9.7. A more complex example of choosing a location based on connectivity
​<rsc_location id="WebServer-connectivity" rsc="Webserver">
​ <rule id="ping-exclude-rule" score="-INFINITY" >
​ <expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>
​ </rule>
​ <rule id="ping-prefer-rule" score-attribute="pingd" >
​ <expression id="ping-prefer" attribute="pingd" operation="defined"/>
​ </rule>
​</rsc_location>

 ⁠9.3.3. Migrating Resources

				Normally, when the cluster needs to move a resource, it fully restarts the resource (i.e. stops the resource on the current node and starts it on the new node).
			

				However, some types of resources, such as Xen virtual guests, are able to move to another location without loss of state (often referred to as live migration or hot migration). In pacemaker, this is called resource migration. Pacemaker can be configured to migrate a resource when moving it, rather than restarting it.
			

				Not all resources are able to migrate; see the Migration Checklist below, and those that can, won’t do so in all situations. Conceptually, there are two requirements from which the other prerequisites follow:
			
	
						The resource must be active and healthy at the old location; and
					

	
						everything required for the resource to run must be available on both the old and new locations.
					

				The cluster is able to accommodate both push and pull migration models by requiring the resource agent to support two special actions: migrate_to (performed on the current location) and migrate_from (performed on the destination).
			

				In push migration, the process on the current location transfers the resource to the new location where is it later activated. In this scenario, most of the work would be done in the migrate_to action and, if anything, the activation would occur during migrate_from.
			

				Conversely for pull, the migrate_to action is practically empty and migrate_from does most of the work, extracting the relevant resource state from the old location and activating it.
			

				There is no wrong or right way for a resource agent to implement migration, as long as it works.
			
Migration Checklist
	
						The resource may not be a clone.
					

	
						The resource must use an OCF style agent.
					

	
						The resource must not be in a failed or degraded state.
					

	
						The resource agent must support migrate_to and migrate_from actions, and advertise them in its metadata.
					

	
						The resource must have the allow-migrate meta-attribute set to true (which is not the default).
					

				If an otherwise migratable resource depends on another resource via an ordering constraint, there are special situations in which it will be restarted rather than migrated.
			

				For example, if the resource depends on a clone, and at the time the resource needs to be moved, the clone has instances that are stopping and instances that are starting, then the resource will be restarted. The scheduler is not yet able to model this situation correctly and so takes the safer (if less optimal) path.
			

				Also, if a migratable resource depends on a non-migratable resource, and both need to be moved, the migratable resource will be restarted.
			

 ⁠9.4. Tracking Node Health

			A node may be functioning adequately as far as cluster membership is concerned, and yet be "unhealthy" in some respect that makes it an undesirable location for resources. For example, a disk drive may be reporting SMART errors, or the CPU may be highly loaded.
		

			Pacemaker offers a way to automatically move resources off unhealthy nodes.
		

 ⁠9.4.1. Node Health Attributes

				Pacemaker will treat any node attribute whose name starts with #health as an indicator of node health. Node health attributes may have one of the following values:
			

 ⁠Table 9.2. Allowed Values for Node Health Attributes
	Value	Intended significance
	
							
								red
							

								
							
								This indicator is unhealthy
							

							
	
							
								yellow
							

								
							
								This indicator is becoming unhealthy
							

							
	
							
								green
							

								
							
								This indicator is healthy
							

							
	
							
								integer
							

								
							
								A numeric score to apply to all resources on this node (0 or positive is healthy, negative is unhealthy)
							

							

 ⁠9.4.2. Node Health Strategy

				Pacemaker assigns a node health score to each node, as the sum of the values of all its node health attributes. This score will be used as a location constraint applied to this node for all resources.
			

				The node-health-strategy cluster option controls how Pacemaker responds to changes in node health attributes, and how it translates red, yellow, and green to scores.
			

				Allowed values are:
			

 ⁠Table 9.3. Node Health Strategies
	Value	Effect
	
							
								none
							

								
							
								Do not track node health attributes at all.
							

							
	
							
								migrate-on-red
							

								
							
								Assign the value of -INFINITY to red, and 0 to yellow and green. This will cause all resources to move off the node if any attribute is red.
							

							
	
							
								only-green
							

								
							
								Assign the value of -INFINITY to red and yellow, and 0 to green. This will cause all resources to move off the node if any attribute is red or yellow.
							

							
	
							
								progressive
							

								
							
								Assign the value of the node-health-red cluster option to red, the value of node-health-yellow to yellow, and the value of node-health-green to green. Each node is additionally assigned a score of node-health-base (this allows resources to start even if some attributes are yellow). This strategy gives the administrator finer control over how important each value is.
							

							
	
							
								custom
							

								
							
								Track node health attributes using the same values as progressive for red, yellow, and green, but do not take them into account. The administrator is expected to implement a policy by defining rules (see Chapter 8, Rules) referencing node health attributes.
							

							

 ⁠9.4.3. Measuring Node Health

				Since Pacemaker calculates node health based on node attributes, any method that sets node attributes may be used to measure node health. The most common ways are resource agents or separate daemons.
			

				Pacemaker provides examples that can be used directly or as a basis for custom code. The ocf:pacemaker:HealthCPU and ocf:pacemaker:HealthSMART resource agents set node health attributes based on CPU and disk parameters. The ipmiservicelogd daemon sets node health attributes based on IPMI values (the ocf:pacemaker:SystemHealth resource agent can be used to manage the daemon as a cluster resource).
			

				In order to take advantage of this feature - firstly add the resource to your cluster, preferably as a cloned resource to constantly measure health on all nodes:
			
​<clone id="resHealthIOWait-clone">
​ <primitive class="ocf" id="HealthIOWait" provider="pacemaker" type="HealthIOWait">
​ <instance_attributes id="resHealthIOWait-instance_attributes">
​ <nvpair id="resHealthIOWait-instance_attributes-red_limit" name="red_limit" value="30"/>
​ <nvpair id="resHealthIOWait-instance_attributes-yellow_limit" name="yellow_limit" value="10"/>
​ </instance_attributes>
​ <operations>
​ <op id="resHealthIOWait-monitor-interval-5" interval="5" name="monitor" timeout="5"/>
​ <op id="resHealthIOWait-start-interval-0s" interval="0s" name="start" timeout="10s"/>
​ <op id="resHealthIOWait-stop-interval-0s" interval="0s" name="stop" timeout="10s"/>
​ </operations>
​ </primitive>
​</clone>

				This way attrd_updater will set proper status for each node running this resource. Any attribute matching "#health-[a-zA-z]+" will force cluster to migrate all resources from unhealthy node and place it on other nodes according to all constraints defined in your cluster.
			

				When the node is no longer faulty you can force the cluster to restart the cloned resource on faulty node and make it available to take resources, in this case since we are using HealthIOWait provider:
			
attrd_updater -n "#health-iowait" -U "green" --node="<nodename>" -d "60s"

 ⁠9.5. Reloading Services After a Definition Change

			The cluster automatically detects changes to the definition of services it manages. The normal response is to stop the service (using the old definition) and start it again (with the new definition). This works well, but some services are smarter and can be told to use a new set of options without restarting.
		

			To take advantage of this capability, the resource agent must:
		
	
					Accept the reload operation and perform any required actions. The actions here depend completely on your application!
				

 ⁠Example 9.8. The DRBD agent’s logic for supporting reload
​case $1 in
​ start)
​ drbd_start
​ ;;
​ stop)
​ drbd_stop
​ ;;
​ reload)
​ drbd_reload
​ ;;
​ monitor)
​ drbd_monitor
​ ;;
​ *)
​ drbd_usage
​ exit $OCF_ERR_UNIMPLEMENTED
​ ;;
​esac
​exit $?

	
					Advertise the reload operation in the actions section of its metadata
				

 ⁠Example 9.9. The DRBD Agent Advertising Support for the reload Operation
​<?xml version="1.0"?>
​ <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
​ <resource-agent name="drbd">
​ <version>1.1</version>
​
​ <longdesc>
​ Master/Slave OCF Resource Agent for DRBD
​ </longdesc>
​
​ ...
​
​ <actions>
​ <action name="start" timeout="240" />
​ <action name="reload" timeout="240" />
​ <action name="promote" timeout="90" />
​ <action name="demote" timeout="90" />
​ <action name="notify" timeout="90" />
​ <action name="stop" timeout="100" />
​ <action name="meta-data" timeout="5" />
​ <action name="validate-all" timeout="30" />
​ </actions>
​ </resource-agent>

	
					Advertise one or more parameters that can take effect using reload.
				

					Any parameter with the unique set to 0 is eligible to be used in this way.
				

 ⁠Example 9.10. Parameter that can be changed using reload
​<parameter name="drbdconf" unique="0">
​ <longdesc>Full path to the drbd.conf file.</longdesc>
​ <shortdesc>Path to drbd.conf</shortdesc>
​ <content type="string" default="${OCF_RESKEY_drbdconf_default}"/>
​</parameter>

			Once these requirements are satisfied, the cluster will automatically know to reload the resource (instead of restarting) when a non-unique field changes.
		
Note

				Metadata will not be re-read unless the resource needs to be started. This may mean that the resource will be restarted the first time, even though you changed a parameter with unique=0.
			

Note

				If both a unique and non-unique field are changed simultaneously, the resource will still be restarted.
			

[13]
					The naming of this option was perhaps unfortunate as it is easily confused with live migration, the process of moving a resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can be migrated in this manner.
				

[14]
						The attribute name is customizable, in order to allow multiple ping groups to be defined.
					

 ⁠Chapter 10. Advanced Resource Types

 ⁠10.1. Groups - A Syntactic Shortcut

			
		

			One of the most common elements of a cluster is a set of resources that need to be located together, start sequentially, and stop in the reverse order. To simplify this configuration, we support the concept of groups.
		

 ⁠Example 10.1. A group of two primitive resources
​<group id="shortcut">
​ <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​ </primitive>
​ <primitive id="Email" class="lsb" type="exim"/>
​</group>

			Although the example above contains only two resources, there is no limit to the number of resources a group can contain. The example is also sufficient to explain the fundamental properties of a group:
		
	
					Resources are started in the order they appear in (Public-IP first, then Email)
				

	
					Resources are stopped in the reverse order to which they appear in (Email first, then Public-IP)
				

			If a resource in the group can’t run anywhere, then nothing after that is allowed to run, too.
		
	
					If Public-IP can’t run anywhere, neither can Email;
				

	
					but if Email can’t run anywhere, this does not affect Public-IP in any way
				

			The group above is logically equivalent to writing:
		

 ⁠Example 10.2. How the cluster sees a group resource
​<configuration>
​ <resources>
​ <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
​ <instance_attributes id="params-public-ip">
​ <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
​ </instance_attributes>
​ </primitive>
​ <primitive id="Email" class="lsb" type="exim"/>
​ </resources>
​ <constraints>
​ <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
​ <rsc_order id="yyy" first="Public-IP" then="Email"/>
​ </constraints>
​</configuration>

			Obviously as the group grows bigger, the reduced configuration effort can become significant.
		

			Another (typical) example of a group is a DRBD volume, the filesystem mount, an IP address, and an application that uses them.
		

 ⁠10.1.1. Group Properties

 ⁠Table 10.1. Properties of a Group Resource
	Field	Description
	
							
								id
							

								
							
								A unique name for the group
							

							

 ⁠10.1.2. Group Options

				Groups inherit the priority, target-role, and is-managed properties from primitive resources. See Section 4.4, “Resource Options” for information about those properties.
			

 ⁠10.1.3. Group Instance Attributes

				Groups have no instance attributes. However, any that are set for the group object will be inherited by the group’s children.
			

 ⁠10.1.4. Group Contents

				Groups may only contain a collection of cluster resources (see Section 4.3, “Resource Properties”). To refer to a child of a group resource, just use the child’s id instead of the group’s.
			

 ⁠10.1.5. Group Constraints

				Although it is possible to reference a group’s children in constraints, it is usually preferable to reference the group itself.
			

 ⁠Example 10.3. Some constraints involving groups
​<constraints>
​ <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
​ <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
​ <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>
​</constraints>

 ⁠10.1.6. Group Stickiness

				
			

				Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every active resource of the group will contribute its stickiness value to the group’s total. So if the default resource-stickiness is 100, and a group has seven members, five of which are active, then the group as a whole will prefer its current location with a score of 500.
			

 ⁠10.2. Clones - Resources That Can Have Multiple Active Instances

			
		

			Clone resources are resources that can have more than one copy active at the same time. This allows you, for example, to run a copy of a daemon on every node. You can clone any primitive or group resource.
 ⁠[15]
		

 ⁠10.2.1. Anonymous versus Unique Clones

				A clone resource is configured to be either anonymous or globally unique.
			

				Anonymous clones are the simplest. These behave completely identically everywhere they are running. Because of this, there can be only one instance of an anonymous clone active per node.
			

				The instances of globally unique clones are distinct entities. All instances are launched identically, but one instance of the clone is not identical to any other instance, whether running on the same node or a different node. As an example, a cloned IP address can use special kernel functionality such that each instance handles a subset of requests for the same IP address.
			

 ⁠10.2.2. Promotable clones

				
			

				If a clone is promotable, its instances can perform a special role that Pacemaker will manage via the promote and demote actions of the resource agent.
			

				Services that support such a special role have various terms for the special role and the default role: primary and secondary, master and replica, controller and worker, etc. Pacemaker uses the terms master and slave,
 ⁠[16] but is agnostic to what the service calls them or what they do.
			

				All that Pacemaker cares about is that an instance comes up in the default role when started, and the resource agent supports the promote and demote actions to manage entering and exiting the special role.
			

 ⁠10.2.3. Clone Properties

 ⁠Table 10.2. Properties of a Clone Resource
	Field	Description
	
							
								id
							

								
							
								A unique name for the clone
							

							

 ⁠10.2.4. Clone Options

				Options inherited from primitive resources: priority, target-role, is-managed
			

 ⁠Table 10.3. Clone-specific configuration options
	Field	Default	Description
	
							
								globally-unique
							

								
							
								false
							

								
							
								If true, each clone instance performs a distinct function
							

							
	
							
								clone-max
							

								
							
								number of nodes in cluster
							

								
							
								The maximum number of clone instances that can be started across the entire cluster
							

							
	
							
								clone-node-max
							

								
							
								1
							

								
							
								If globally-unique is true, the maximum number of clone instances that can be started on a single node
							

							
	
							
								clone-min
							

								
							
								0
							

								
							
								Require at least this number of clone instances to be runnable before allowing resources depending on the clone to be runnable. A value of 0 means require all clone instances to be runnable.
							

							
	
							
								notify
							

								
							
								false
							

								
							
								Call the resource agent’s notify action for all active instances, before and after starting or stopping any clone instance. The resource agent must support this action. Allowed values: false, true
							

							
	
							
								ordered
							

								
							
								false
							

								
							
								If true, clone instances must be started sequentially instead of in parallel Allowed values: false, true
							

							
	
							
								interleave
							

								
							
								false
							

								
							
								When this clone is ordered relative to another clone, if this option is false (the default), the ordering is relative to all instances of the other clone, whereas if this option is true, the ordering is relative only to instances on the same node. Allowed values: false, true
							

							
	
							
								promotable
							

								
							
								false
							

								
							
								If true, clone instances can perform a special role that Pacemaker will manage via the resource agent’s promote and demote actions. The resource agent must support these actions. Allowed values: false, true
							

							
	
							
								promoted-max
							

								
							
								1
							

								
							
								If promotable is true, the number of instances that can be promoted at one time across the entire cluster
							

							
	
							
								promoted-node-max
							

								
							
								1
							

								
							
								If promotable is true and globally-unique is false, the number of clone instances can be promoted at one time on a single node
							

							

				For backward compatibility, master-max and master-node-max are accepted as aliases for promoted-max and promoted-node-max, but are deprecated since 2.0.0, and support for them will be removed in a future version.
			

 ⁠10.2.5. Clone Contents

				Clones must contain exactly one primitive or group resource.
			

 ⁠Example 10.4. A clone that runs a web server on all nodes
​<clone id="apache-clone">
​ <primitive id="apache" class="lsb" type="apache">
​ <operations>
​ <op id="apache-monitor" name="monitor" interval="30"/>
​ </operations>
​ </primitive>
​</clone>

Warning

					You should never reference the name of a clone’s child (the primitive or group resource being cloned). If you think you need to do this, you probably need to re-evaluate your design.
				

 ⁠10.2.6. Clone Instance Attributes

				Clones have no instance attributes; however, any that are set here will be inherited by the clone’s child.
			

 ⁠10.2.7. Clone Constraints

				In most cases, a clone will have a single instance on each active cluster node. If this is not the case, you can indicate which nodes the cluster should preferentially assign copies to with resource location constraints. These constraints are written no differently from those for primitive resources except that the clone’s id is used.
			

 ⁠Example 10.5. Some constraints involving clones
​<constraints>
​ <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
​ <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
​ <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
​</constraints>

				Ordering constraints behave slightly differently for clones. In the example above, apache-stats will wait until all copies of apache-clone that need to be started have done so before being started itself. Only if no copies can be started will apache-stats be prevented from being active. Additionally, the clone will wait for apache-stats to be stopped before stopping itself.
			

				Colocation of a primitive or group resource with a clone means that the resource can run on any node with an active instance of the clone. The cluster will choose an instance based on where the clone is running and the resource’s own location preferences.
			

				Colocation between clones is also possible. If one clone A is colocated with another clone B, the set of allowed locations for A is limited to nodes on which B is (or will be) active. Placement is then performed normally.
			

 ⁠10.2.7.1. Promotable Clone Constraints

					For promotable clone resources, the first-action and/or then-action fields for ordering constraints may be set to promote or demote to constrain the master role, and colocation constraints may contain rsc-role and/or with-rsc-role fields.
				

 ⁠Table 10.4. Additional colocation constraint options for promotable clone resources
	Field	Default	Description
	
								
									rsc-role
								

									
								
									Started
								

									
								
									An additional attribute of colocation constraints that specifies the role that rsc must be in. Allowed values: Started, Master, Slave.
								

								
	
								
									with-rsc-role
								

									
								
									Started
								

									
								
									An additional attribute of colocation constraints that specifies the role that with-rsc must be in. Allowed values: Started, Master, Slave.
								

								

 ⁠Example 10.6. Constraints involving promotable clone resources
​<constraints>
​ <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
​ <rsc_colocation id="backup-with-db-slave" rsc="backup"
​ with-rsc="database" with-rsc-role="Slave"/>
​ <rsc_colocation id="myapp-with-db-master" rsc="myApp"
​ with-rsc="database" with-rsc-role="Master"/>
​ <rsc_order id="start-db-before-backup" first="database" then="backup"/>
​ <rsc_order id="promote-db-then-app" first="database" first-action="promote"
​ then="myApp" then-action="start"/>
​</constraints>

					In the example above, myApp will wait until one of the database copies has been started and promoted to master before being started itself on the same node. Only if no copies can be promoted will myApp be prevented from being active. Additionally, the cluster will wait for myApp to be stopped before demoting the database.
				

					Colocation of a primitive or group resource with a promotable clone resource means that it can run on any node with an active instance of the promotable clone resource that has the specified role (master or slave). In the example above, the cluster will choose a location based on where database is running as a master, and if there are multiple master instances it will also factor in myApp's own location preferences when deciding which location to choose.
				

					Colocation with regular clones and other promotable clone resources is also possible. In such cases, the set of allowed locations for the rsc clone is (after role filtering) limited to nodes on which the with-rsc promotable clone resource is (or will be) in the specified role. Placement is then performed as normal.
				

 ⁠10.2.7.2. Using Promotable Clone Resources in Colocation Sets

 ⁠Table 10.5. Additional colocation set options relevant to promotable clone resources
	Field	Default	Description
	
								
									role
								

									
								
									Started
								

									
								
									The role that all members of the set must be in. Allowed values: Started, Master, Slave.
								

								

					In the following example B's master must be located on the same node as A's master. Additionally resources C and D must be located on the same node as A's and B's masters.
				

 ⁠Example 10.7. Colocate C and D with A’s and B’s master instances
​<constraints>
​ <rsc_colocation id="coloc-1" score="INFINITY" >
​ <resource_set id="colocated-set-example-1" sequential="true" role="Master">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ <resource_set id="colocated-set-example-2" sequential="true">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ </rsc_colocation>
​</constraints>

 ⁠10.2.7.3. Using Promotable Clone Resources in Ordered Sets

 ⁠Table 10.6. Additional ordered set options relevant to promotable clone resources
	Field	Default	Description
	
								
									action
								

									
								
									value of first-action
								

									
								
									An additional attribute of ordering constraint sets that specifies the action that applies to all members of the set. Allowed values: start, stop, promote, demote.
								

								

 ⁠Example 10.8. Start C and D after first promoting A and B
​<constraints>
​ <rsc_order id="order-1" score="INFINITY" >
​ <resource_set id="ordered-set-1" sequential="true" action="promote">
​ <resource_ref id="A"/>
​ <resource_ref id="B"/>
​ </resource_set>
​ <resource_set id="ordered-set-2" sequential="true" action="start">
​ <resource_ref id="C"/>
​ <resource_ref id="D"/>
​ </resource_set>
​ </rsc_order>
​</constraints>

					In the above example, B cannot be promoted to a master role until A has been promoted. Additionally, resources C and D must wait until A and B have been promoted before they can start.
				

 ⁠10.2.8. Clone Stickiness

				
			

				To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for resource-stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal disturbance to the score calculations of other resources but is enough to prevent Pacemaker from needlessly moving copies around the cluster.
			
Note

					For globally unique clones, this may result in multiple instances of the clone staying on a single node, even after another eligible node becomes active (for example, after being put into standby mode then made active again). If you do not want this behavior, specify a resource-stickiness of 0 for the clone temporarily and let the cluster adjust, then set it back to 1 if you want the default behavior to apply again.
				

Important

					If resource-stickiness is set in the rsc_defaults section, it will apply to clone instances as well. This means an explicit resource-stickiness of 0 in rsc_defaults works differently from the implicit default used when resource-stickiness is not specified.
				

 ⁠10.2.9. Clone Resource Agent Requirements

				Any resource can be used as an anonymous clone, as it requires no additional support from the resource agent. Whether it makes sense to do so depends on your resource and its resource agent.
			

 ⁠10.2.9.1. Resource Agent Requirements for Globally Unique Clones

					Globally unique clones require additional support in the resource agent. In particular, it must only respond with ${OCF_SUCCESS} if the node has that exact instance active. All other probes for instances of the clone should result in ${OCF_NOT_RUNNING} (or one of the other OCF error codes if they are failed).
				

					Individual instances of a clone are identified by appending a colon and a numerical offset, e.g. apache:2.
				

					Resource agents can find out how many copies there are by examining the OCF_RESKEY_CRM_meta_clone_max environment variable and which instance it is by examining OCF_RESKEY_CRM_meta_clone.
				

					The resource agent must not make any assumptions (based on OCF_RESKEY_CRM_meta_clone) about which numerical instances are active. In particular, the list of active copies will not always be an unbroken sequence, nor always start at 0.
				

 ⁠10.2.9.2. Resource Agent Requirements for Promotable Clones

					Promotable clone resources require two extra actions, demote and promote, which are responsible for changing the state of the resource. Like start and stop, they should return ${OCF_SUCCESS} if they completed successfully or a relevant error code if they did not.
				

					The states can mean whatever you wish, but when the resource is started, it must come up in the mode called slave. From there the cluster will decide which instances to promote to master.
				

					In addition to the clone requirements for monitor actions, agents must also accurately report which state they are in. The cluster relies on the agent to report its status (including role) accurately and does not indicate to the agent what role it currently believes it to be in.
				

 ⁠Table 10.7. Role implications of OCF return codes
	Monitor Return Code	Description
	
								
									OCF_NOT_RUNNING
								

									
								
									Stopped
								

								
	
								
									OCF_SUCCESS
								

									
								
									Running (Slave)
								

								
	
								
									OCF_RUNNING_MASTER
								

									
								
									Running (Master)
								

								
	
								
									OCF_FAILED_MASTER
								

									
								
									Failed (Master)
								

								
	
								
									Other
								

									
								
									Failed (Slave)
								

								

 ⁠10.2.9.3. Clone Notifications

					If the clone has the notify meta-attribute set to true, and the resource agent supports the notify action, Pacemaker will call the action when appropriate, passing a number of extra variables which, when combined with additional context, can be used to calculate the current state of the cluster and what is about to happen to it.
				

 ⁠Table 10.8. Environment variables supplied with Clone notify actions
	Variable	Description
	
								
									OCF_RESKEY_CRM_meta_notify_type
								

									
								
									Allowed values: pre, post
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_operation
								

									
								
									Allowed values: start, stop
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_start_resource
								

									
								
									Resources to be started
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_stop_resource
								

									
								
									Resources to be stopped
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_active_resource
								

									
								
									Resources that are running
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_inactive_resource
								

									
								
									Resources that are not running
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_start_uname
								

									
								
									Nodes on which resources will be started
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_stop_uname
								

									
								
									Nodes on which resources will be stopped
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_active_uname
								

									
								
									Nodes on which resources are running
								

								

					The variables come in pairs, such as OCF_RESKEY_CRM_meta_notify_start_resource and OCF_RESKEY_CRM_meta_notify_start_uname, and should be treated as an array of whitespace-separated elements.
				

					OCF_RESKEY_CRM_meta_notify_inactive_resource is an exception, as the matching uname variable does not exist since inactive resources are not running on any node.
				

					Thus, in order to indicate that clone:0 will be started on sles-1, clone:2 will be started on sles-3, and clone:3 will be started on sles-2, the cluster would set:
				

 ⁠Example 10.9. Notification variables
​OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"
​OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"

Note

						Pacemaker will log but otherwise ignore failures of notify actions.
					

 ⁠10.2.9.4. Interpretation of Notification Variables

Pre-notification (stop):
	
							Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource
						

	
							Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource
						

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

Post-notification (stop) / Pre-notification (start):
	
							Active resources
						
	
									$OCF_RESKEY_CRM_meta_notify_active_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
							Inactive resources
						
	
									$OCF_RESKEY_CRM_meta_notify_inactive_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
							Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

Post-notification (start):
	
							Active resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_active_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Inactive resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_inactive_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

 ⁠10.2.9.5. Extra Notifications for Promotable Clones

 ⁠Table 10.9. Extra environment variables supplied for promotable clones
	Variable	Description
	
								
									OCF_RESKEY_CRM_meta_notify_master_resource
								

									
								
									Resources that are running in Master mode
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_slave_resource
								

									
								
									Resources that are running in Slave mode
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_promote_resource
								

									
								
									Resources to be promoted
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_demote_resource
								

									
								
									Resources to be demoted
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_promote_uname
								

									
								
									Nodes on which resources will be promoted
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_demote_uname
								

									
								
									Nodes on which resources will be demoted
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_master_uname
								

									
								
									Nodes on which resources are running in Master mode
								

								
	
								
									OCF_RESKEY_CRM_meta_notify_slave_uname
								

									
								
									Nodes on which resources are running in Slave mode
								

								

 ⁠10.2.9.6. Interpretation of Promotable Notification Variables

Pre-notification (demote):
	
							Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource
						

	
							Master resources: $OCF_RESKEY_CRM_meta_notify_master_resource
						

	
							Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource
						

	
							Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource
						

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

Post-notification (demote) / Pre-notification (stop):
	
							Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource
						

	
							Master resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_master_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_demote_resource
								

	
							Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource
						

	
							Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource
						

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

	
							Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

Post-notification (stop) / Pre-notification (start)
	
							Active resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_active_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
							Master resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_master_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_demote_resource
								

	
							Slave resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_slave_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
							Inactive resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_inactive_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

	
							Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

Post-notification (start) / Pre-notification (promote)
	
							Active resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_active_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Master resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_master_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_demote_resource
								

	
							Slave resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_slave_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Inactive resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_inactive_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

	
							Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

Post-notification (promote)
	
							Active resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_active_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Master resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_master_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_demote_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_promote_resource
								

	
							Slave resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_slave_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_promote_resource
								

	
							Inactive resources:
						
	
									$OCF_RESKEY_CRM_meta_notify_inactive_resource
								

	
									plus $OCF_RESKEY_CRM_meta_notify_stop_resource
								

	
									minus $OCF_RESKEY_CRM_meta_notify_start_resource
								

	
							Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

	
							Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource
						

	
							Resources that were promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource
						

	
							Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource
						

	
							Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource
						

 ⁠10.2.10. Monitoring Promotable Clone Resources

				The usual monitor actions are insufficient to monitor a promotable clone resource, because Pacemaker needs to verify not only that the resource is active, but also that its actual role matches its intended one.
			

				Define two monitoring actions: the usual one will cover the slave role, and an additional one with role="master" will cover the master role.
			

 ⁠Example 10.10. Monitoring both states of a promotable clone resource
​<clone id="myMasterRsc">
​ <meta_attributes id="myMasterRsc-meta">
​ <nvpair name="promotable" value="true"/>
​ </meta_attributes>
​ <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
​ <operations>
​ <op id="public-ip-slave-check" name="monitor" interval="60"/>
​ <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/>
​ </operations>
​ </primitive>
​</clone>

Important

					It is crucial that every monitor operation has a different interval! Pacemaker currently differentiates between operations only by resource and interval; so if (for example) a promotable clone resource had the same monitor interval for both roles, Pacemaker would ignore the role when checking the status — which would cause unexpected return codes, and therefore unnecessary complications.
				

 ⁠10.2.11. Determining Which Instance is Promoted

				Pacemaker can choose a promotable clone instance to be promoted in one of two ways:
			
	
						Promotion scores: These are node attributes set via the crm_master utility, which generally would be called by the resource agent’s start action if it supports promotable clones. This tool automatically detects both the resource and host, and should be used to set a preference for being promoted. Based on this, promoted-max, and promoted-node-max, the instance(s) with the highest preference will be promoted.
					

	
						Constraints: Location constraints can indicate which nodes are most preferred as masters.
					

 ⁠Example 10.11. Explicitly preferring node1 to be promoted to master
​<rsc_location id="master-location" rsc="myMasterRsc">
​ <rule id="master-rule" score="100" role="Master">
​ <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/>
​ </rule>
​</rsc_location>

 ⁠10.3. Bundles - Isolated Environments

			
		

			Pacemaker supports a special syntax for launching a container with any infrastructure it requires: the bundle.
		

			Pacemaker bundles support Docker, podman, and rkt container technologies.
 ⁠[17]
		

 ⁠Example 10.12. A bundle for a containerized web server
​<bundle id="httpd-bundle">
​ <podman image="pcmk:http" replicas="3"/>
​ <network ip-range-start="192.168.122.131"
​ host-netmask="24"
​ host-interface="eth0">
​ <port-mapping id="httpd-port" port="80"/>
​ </network>
​ <storage>
​ <storage-mapping id="httpd-syslog"
​ source-dir="/dev/log"
​ target-dir="/dev/log"
​ options="rw"/>
​ <storage-mapping id="httpd-root"
​ source-dir="/srv/html"
​ target-dir="/var/www/html"
​ options="rw,Z"/>
​ <storage-mapping id="httpd-logs"
​ source-dir-root="/var/log/pacemaker/bundles"
​ target-dir="/etc/httpd/logs"
​ options="rw,Z"/>
​ </storage>
​ <primitive class="ocf" id="httpd" provider="heartbeat" type="apache"/>
​</bundle>

 ⁠10.3.1. Bundle Prerequisites

				
			

				Before configuring a bundle in Pacemaker, the user must install the appropriate container launch technology (Docker, podman, or rkt), and supply a fully configured container image, on every node allowed to run the bundle.
			

				Pacemaker will create an implicit resource of type ocf:heartbeat:docker, ocf:heartbeat:podman, or ocf:heartbeat:rkt to manage a bundle’s container. The user must ensure that the appropriate resource agent is installed on every node allowed to run the bundle.
			

 ⁠10.3.2. Bundle Properties

				
			

 ⁠Table 10.10. XML Attributes of a bundle Element
	Attribute	Description
	
							
								id
							

								
							
								A unique name for the bundle (required)
							

							
	
							
								description
							

								
							
								Arbitrary text (not used by Pacemaker)
							

							

				A bundle must contain exactly one docker, podman, or rkt element.
			

 ⁠10.3.3. Bundle Container Properties

				
			

 ⁠Table 10.11. XML attributes of a docker, podman, or rkt Element
	Attribute	Default	Description
	
							
								image
							

								
							
							

								
							
								Container image tag (required)
							

							
	
							
								replicas
							

								
							
								Value of promoted-max if that is positive, else 1
							

								
							
								A positive integer specifying the number of container instances to launch
							

							
	
							
								replicas-per-host
							

								
							
								1
							

								
							
								A positive integer specifying the number of container instances allowed to run on a single node
							

							
	
							
								promoted-max
							

								
							
								0
							

								
							
								A non-negative integer that, if positive, indicates that the containerized service should be treated as a promotable service, with this many replicas allowed to run the service in the master role
							

							
	
							
								network
							

								
							
							

								
							
								If specified, this will be passed to the docker run, podman run, or rkt run command as the network setting for the container.
							

							
	
							
								run-command
							

								
							
								/usr/sbin/pacemaker-remoted if bundle contains a primitive, otherwise none
							

								
							
								This command will be run inside the container when launching it ("PID 1"). If the bundle contains a primitive, this command must start pacemaker-remoted (but could, for example, be a script that does other stuff, too).
							

							
	
							
								options
							

								
							
							

								
							
								Extra command-line options to pass to the docker run, podman run, or rkt run command
							

							

Note

					Considerations when using cluster configurations or container images from Pacemaker 1.1:
				
	
							If the container image has a pre-2.0.0 version of Pacemaker, set run-command to /usr/sbin/pacemaker_remoted (note the underbar instead of dash).
						

	
							masters is accepted as an alias for promoted-max, but is deprecated since 2.0.0, and support for it will be removed in a future version.
						

 ⁠10.3.4. Bundle Network Properties

				A bundle may optionally contain one <network> element.
			

 ⁠Table 10.12. XML attributes of a network Element
	Attribute	Default	Description
	
							
								add-host
							

								
							
								TRUE
							

								
							
								If TRUE, and ip-range-start is used, Pacemaker will automatically ensure that /etc/hosts inside the containers has entries for each replica name and its assigned IP.
							

							
	
							
								ip-range-start
							

								
							
							

								
							
								If specified, Pacemaker will create an implicit ocf:heartbeat:IPaddr2 resource for each container instance, starting with this IP address, using up to replicas sequential addresses. These addresses can be used from the host’s network to reach the service inside the container, though it is not visible within the container itself. Only IPv4 addresses are currently supported.
							

							
	
							
								host-netmask
							

								
							
								32
							

								
							
								If ip-range-start is specified, the IP addresses are created with this CIDR netmask (as a number of bits).
							

							
	
							
								host-interface
							

								
							
							

								
							
								If ip-range-start is specified, the IP addresses are created on this host interface (by default, it will be determined from the IP address).
							

							
	
							
								control-port
							

								
							
								3121
							

								
							
								If the bundle contains a primitive, the cluster will use this integer TCP port for communication with Pacemaker Remote inside the container. Changing this is useful when the container is unable to listen on the default port, for example, when the container uses the host’s network rather than ip-range-start (in which case replicas-per-host must be 1), or when the bundle may run on a Pacemaker Remote node that is already listening on the default port. Any PCMK_remote_port environment variable set on the host or in the container is ignored for bundle connections.
							

							

Note

					Replicas are named by the bundle id plus a dash and an integer counter starting with zero. For example, if a bundle named httpd-bundle has replicas=2, its containers will be named httpd-bundle-0 and httpd-bundle-1.
				

				Additionally, a network element may optionally contain one or more port-mapping elements.
			

 ⁠Table 10.13. Attributes of a port-mapping Element
	Attribute	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the port mapping (required)
							

							
	
							
								port
							

								
							
							

								
							
								If this is specified, connections to this TCP port number on the host network (on the container’s assigned IP address, if ip-range-start is specified) will be forwarded to the container network. Exactly one of port or range must be specified in a port-mapping.
							

							
	
							
								internal-port
							

								
							
								value of port
							

								
							
								If port and this are specified, connections to port on the host’s network will be forwarded to this port on the container network.
							

							
	
							
								range
							

								
							
							

								
							
								If this is specified, connections to these TCP port numbers (expressed as first_port-last_port) on the host network (on the container’s assigned IP address, if ip-range-start is specified) will be forwarded to the same ports in the container network. Exactly one of port or range must be specified in a port-mapping.
							

							

Note

					If the bundle contains a primitive, Pacemaker will automatically map the control-port, so it is not necessary to specify that port in a port-mapping.
				

 ⁠10.3.5. Bundle Storage Properties

				A bundle may optionally contain one storage element. A storage element has no properties of its own, but may contain one or more storage-mapping elements.
			

 ⁠Table 10.14. Attributes of a storage-mapping Element
	Attribute	Default	Description
	
							
								id
							

								
							
							

								
							
								A unique name for the storage mapping (required)
							

							
	
							
								source-dir
							

								
							
							

								
							
								The absolute path on the host’s filesystem that will be mapped into the container. Exactly one of source-dir and source-dir-root must be specified in a storage-mapping.
							

							
	
							
								source-dir-root
							

								
							
							

								
							
								The start of a path on the host’s filesystem that will be mapped into the container, using a different subdirectory on the host for each container instance. The subdirectory will be named the same as the replica name. Exactly one of source-dir and source-dir-root must be specified in a storage-mapping.
							

							
	
							
								target-dir
							

								
							
							

								
							
								The path name within the container where the host storage will be mapped (required)
							

							
	
							
								options
							

								
							
							

								
							
								A comma-separated list of file system mount options to use when mapping the storage
							

							

Note

					Pacemaker does not define the behavior if the source directory does not already exist on the host. However, it is expected that the container technology and/or its resource agent will create the source directory in that case.
				

Note

					If the bundle contains a primitive, Pacemaker will automatically map the equivalent of source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey and source-dir-root=/var/log/pacemaker/bundles target-dir=/var/log into the container, so it is not necessary to specify those paths in a storage-mapping.
				

Important

					The PCMK_authkey_location environment variable must not be set to anything other than the default of /etc/pacemaker/authkey on any node in the cluster.
				

Important

					If SELinux is used in enforcing mode on the host, you must ensure the container is allowed to use any storage you mount into it. For Docker and podman bundles, adding "Z" to the mount options will create a container-specific label for the mount that allows the container access.
				

 ⁠10.3.6. Bundle Primitive

				
			

				A bundle may optionally contain one primitive resource. The primitive may have operations, instance attributes, and meta-attributes defined, as usual.
			

				If a bundle contains a primitive resource, the container image must include the Pacemaker Remote daemon, and at least one of ip-range-start or control-port must be configured in the bundle. Pacemaker will create an implicit ocf:pacemaker:remote resource for the connection, launch Pacemaker Remote within the container, and monitor and manage the primitive resource via Pacemaker Remote.
			

				If the bundle has more than one container instance (replica), the primitive resource will function as an implicit clone — a promotable clone if the bundle has masters greater than zero.
			
Note

					If you want to pass environment variables to a bundle’s Pacemaker Remote connection or primitive, you have two options:
				
	
							Environment variables whose value is the same regardless of the underlying host may be set using the container element’s options attribute.
						

	
							If you want variables to have host-specific values, you can use the storage-mapping element to map a file on the host as /etc/pacemaker/pcmk-init.env in the container. Pacemaker Remote will parse this file as a shell-like format, with variables set as NAME=VALUE, ignoring blank lines and comments starting with "#".
						

Important

					When a bundle has a primitive, Pacemaker on all cluster nodes must be able to contact Pacemaker Remote inside the bundle’s containers.
				
	
							The containers must have an accessible network (for example, network should not be set to "none" with a primitive).
						

	
							The default, using a distinct network space inside the container, works in combination with ip-range-start. Any firewall must allow access from all cluster nodes to the control-port on the container IPs.
						

	
							If the container shares the host’s network space (for example, by setting network to "host"), a unique control-port should be specified for each bundle. Any firewall must allow access from all cluster nodes to the control-port on all cluster and remote node IPs.
						

 ⁠10.3.7. Bundle Node Attributes

				
			

				If the bundle has a primitive, the primitive’s resource agent may want to set node attributes such as promotion scores. However, with containers, it is not apparent which node should get the attribute.
			

				If the container uses shared storage that is the same no matter which node the container is hosted on, then it is appropriate to use the promotion score on the bundle node itself.
			

				On the other hand, if the container uses storage exported from the underlying host, then it may be more appropriate to use the promotion score on the underlying host.
			

				Since this depends on the particular situation, the container-attribute-target resource meta-attribute allows the user to specify which approach to use. If it is set to host, then user-defined node attributes will be checked on the underlying host. If it is anything else, the local node (in this case the bundle node) is used as usual.
			

				This only applies to user-defined attributes; the cluster will always check the local node for cluster-defined attributes such as #uname.
			

				If container-attribute-target is host, the cluster will pass additional environment variables to the primitive’s resource agent that allow it to set node attributes appropriately: CRM_meta_container_attribute_target (identical to the meta-attribute value) and CRM_meta_physical_host (the name of the underlying host).
			
Note

					When called by a resource agent, the attrd_updater and crm_attribute commands will automatically check those environment variables and set attributes appropriately.
				

 ⁠10.3.8. Bundle Meta-Attributes

				
			

				Any meta-attribute set on a bundle will be inherited by the bundle’s primitive and any resources implicitly created by Pacemaker for the bundle.
			

				This includes options such as priority, target-role, and is-managed. See Section 4.4, “Resource Options” for more information.
			

 ⁠10.3.9. Limitations of Bundles

				Restarting pacemaker while a bundle is unmanaged or the cluster is in maintenance mode may cause the bundle to fail.
			

				Bundles may not be explicitly cloned or included in groups. This includes the bundle’s primitive and any resources implicitly created by Pacemaker for the bundle. (If replicas is greater than 1, the bundle will behave like a clone implicitly.)
			

				Bundles do not have instance attributes, utilization attributes, or operations, though a bundle’s primitive may have them.
			

				A bundle with a primitive can run on a Pacemaker Remote node only if the bundle uses a distinct control-port.
			

[15]
				Of course, the service must support running multiple instances.
			

[16]
					These are historical terms that will eventually be replaced, but the extensive use of them and the need for backward compatibility makes it a long process. You may see examples using a master tag instead of a clone tag with the promotable meta-attribute set to true; the master tag is supported, but deprecated, and will be removed in a future version. You may also see such services referred to as multi-state or stateful; these means the same thing as promotable.
				

[17]
				Docker is a trademark of Docker, Inc. No endorsement by or association with Docker, Inc. is implied.
			

 ⁠Chapter 11. Reusing Parts of the Configuration

		Pacemaker provides multiple ways to simplify the configuration XML by reusing parts of it in multiple places.
	

		Besides simplifying the XML, this also allows you to manipulate multiple configuration elements with a single reference.
	

 ⁠11.1. Reusing Resource Definitions

			If you want to create lots of resources with similar configurations, defining a resource template simplifies the task. Once defined, it can be referenced in primitives or in certain types of constraints.
		

 ⁠11.1.1. Configuring Resources with Templates

				The primitives referencing the template will inherit all meta-attributes, instance attributes, utilization attributes and operations defined in the template. And you can define specific attributes and operations for any of the primitives. If any of these are defined in both the template and the primitive, the values defined in the primitive will take precedence over the ones defined in the template.
			

				Hence, resource templates help to reduce the amount of configuration work. If any changes are needed, they can be done to the template definition and will take effect globally in all resource definitions referencing that template.
			

				Resource templates have a syntax similar to that of primitives.
			

 ⁠Example 11.1. Resource template for a migratable Xen virtual machine
​<template id="vm-template" class="ocf" provider="heartbeat" type="Xen">
​ <meta_attributes id="vm-template-meta_attributes">
​ <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>
​ </meta_attributes>
​ <utilization id="vm-template-utilization">
​ <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
​ </utilization>
​ <operations>
​ <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
​ <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
​ </operations>
​</template>

				Once you define a resource template, you can use it in primitives by specifying the template property.
			

 ⁠Example 11.2. Xen primitive resource using a resource template
​<primitive id="vm1" template="vm-template">
​ <instance_attributes id="vm1-instance_attributes">
​ <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
​ <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>
​ </instance_attributes>
​</primitive>

				In the example above, the new primitive vm1 will inherit everything from vm-template. For example, the equivalent of the above two examples would be:
			

 ⁠Example 11.3. Equivalent Xen primitive resource not using a resource template
​<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen">
​ <meta_attributes id="vm-template-meta_attributes">
​ <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>
​ </meta_attributes>
​ <utilization id="vm-template-utilization">
​ <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
​ </utilization>
​ <operations>
​ <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
​ <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
​ </operations>
​ <instance_attributes id="vm1-instance_attributes">
​ <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
​ <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>
​ </instance_attributes>
​</primitive>

				If you want to overwrite some attributes or operations, add them to the particular primitive’s definition.
			

 ⁠Example 11.4. Xen resource overriding template values
​<primitive id="vm2" template="vm-template">
​ <meta_attributes id="vm2-meta_attributes">
​ <nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/>
​ </meta_attributes>
​ <utilization id="vm2-utilization">
​ <nvpair id="vm2-utilization-memory" name="memory" value="1024"/>
​ </utilization>
​ <instance_attributes id="vm2-instance_attributes">
​ <nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/>
​ <nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm2"/>
​ </instance_attributes>
​ <operations>
​ <op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/>
​ <op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/>
​ </operations>
​</primitive>

				In the example above, the new primitive vm2 has special attribute values. Its monitor operation has a longer timeout and interval, and the primitive has an additional stop operation.
			

				To see the resulting definition of a resource, run:
			
crm_resource --query-xml --resource vm2

				To see the raw definition of a resource in the CIB, run:
			
crm_resource --query-xml-raw --resource vm2

 ⁠11.1.2. Using Templates in Constraints

				A resource template can be referenced in the following types of constraints:
			
	
						order constraints (see Section 5.3, “Specifying the Order in which Resources Should Start/Stop”)
					

	
						colocation constraints (see Section 5.4, “Placing Resources Relative to other Resources”)
					

	
						rsc_ticket constraints (for multi-site clusters as described in Section 15.3, “Configuring Ticket Dependencies”)
					

				Resource templates referenced in constraints stand for all primitives which are derived from that template. This means, the constraint applies to all primitive resources referencing the resource template. Referencing resource templates in constraints is an alternative to resource sets and can simplify the cluster configuration considerably.
			

				For example, given the example templates earlier in this section:
			
​<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-rsc="base-rsc" score="INFINITY"/>

				would colocate all VMs with base-rsc and is the equivalent of the following constraint configuration:
			
​<rsc_colocation id="vm-colo-base-rsc" score="INFINITY">
​ <resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started">
​ <resource_ref id="vm1"/>
​ <resource_ref id="vm2"/>
​ </resource_set>
​ <resource_set id="vm-colo-base-rsc-1">
​ <resource_ref id="base-rsc"/>
​ </resource_set>
​</rsc_colocation>
Note

					In a colocation constraint, only one template may be referenced from either rsc or with-rsc; the other reference must be a regular resource.
				

 ⁠11.1.3. Using Templates in Resource Sets

				Resource templates can also be referenced in resource sets.
			

				For example, given the example templates earlier in this section, then:
			
​<rsc_order id="order1" score="INFINITY">
​ <resource_set id="order1-0">
​ <resource_ref id="base-rsc"/>
​ <resource_ref id="vm-template"/>
​ <resource_ref id="top-rsc"/>
​ </resource_set>
​</rsc_order>

				is the equivalent of the following constraint using a sequential resource set:
			
​<rsc_order id="order1" score="INFINITY">
​ <resource_set id="order1-0">
​ <resource_ref id="base-rsc"/>
​ <resource_ref id="vm1"/>
​ <resource_ref id="vm2"/>
​ <resource_ref id="top-rsc"/>
​ </resource_set>
​</rsc_order>

				Or, if the resources referencing the template can run in parallel, then:
			
​<rsc_order id="order2" score="INFINITY">
​ <resource_set id="order2-0">
​ <resource_ref id="base-rsc"/>
​ </resource_set>
​ <resource_set id="order2-1" sequential="false">
​ <resource_ref id="vm-template"/>
​ </resource_set>
​ <resource_set id="order2-2">
​ <resource_ref id="top-rsc"/>
​ </resource_set>
​</rsc_order>

				is the equivalent of the following constraint configuration:
			
​<rsc_order id="order2" score="INFINITY">
​ <resource_set id="order2-0">
​ <resource_ref id="base-rsc"/>
​ </resource_set>
​ <resource_set id="order2-1" sequential="false">
​ <resource_ref id="vm1"/>
​ <resource_ref id="vm2"/>
​ </resource_set>
​ <resource_set id="order2-2">
​ <resource_ref id="top-rsc"/>
​ </resource_set>
​</rsc_order>

 ⁠11.2. Reusing Rules, Options and Sets of Operations

			Sometimes a number of constraints need to use the same set of rules, and resources need to set the same options and parameters. To simplify this situation, you can refer to an existing object using an id-ref instead of an id.
		

			So if for one resource you have
		
​<rsc_location id="WebServer-connectivity" rsc="Webserver">
​ <rule id="ping-prefer-rule" score-attribute="pingd" >
​ <expression id="ping-prefer" attribute="pingd" operation="defined"/>
​ </rule>
​</rsc_location>

			Then instead of duplicating the rule for all your other resources, you can instead specify:
		

 ⁠Example 11.5. Referencing rules from other constraints
​<rsc_location id="WebDB-connectivity" rsc="WebDB">
​ <rule id-ref="ping-prefer-rule"/>
​</rsc_location>

Important

				The cluster will insist that the rule exists somewhere. Attempting to add a reference to a non-existing rule will cause a validation failure, as will attempting to remove a rule that is referenced elsewhere.
			

			The same principle applies for meta_attributes and instance_attributes as illustrated in the example below:
		

 ⁠Example 11.6. Referencing attributes, options, and operations from other resources
​<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
​ <instance_attributes id="mySpecialRsc-attrs" score="1" >
​ <nvpair id="default-interface" name="interface" value="eth0"/>
​ <nvpair id="default-port" name="port" value="9999"/>
​ </instance_attributes>
​ <meta_attributes id="mySpecialRsc-options">
​ <nvpair id="failure-timeout" name="failure-timeout" value="5m"/>
​ <nvpair id="migration-threshold" name="migration-threshold" value="1"/>
​ <nvpair id="stickiness" name="resource-stickiness" value="0"/>
​ </meta_attributes>
​ <operations id="health-checks">
​ <op id="health-check" name="monitor" interval="60s"/>
​ <op id="health-check" name="monitor" interval="30min"/>
​ </operations>
​</primitive>
​<primitive id="myOtherlRsc" class="ocf" type="Other" provider="me">
​ <instance_attributes id-ref="mySpecialRsc-attrs"/>
​ <meta_attributes id-ref="mySpecialRsc-options"/>
​ <operations id-ref="health-checks"/>
​</primitive>

			id-ref can similarly be used with resource_set (in any constraint type), nvpair, and operations.
		

 ⁠11.3. Tagging Configuration Elements

			Pacemaker allows you to tag any configuration element that has an XML ID.
		

			The main purpose of tagging is to support higher-level user interface tools; Pacemaker itself only uses tags within constraints. Therefore, what you can do with tags mostly depends on the tools you use.
		

 ⁠11.3.1. Configuring Tags

				A tag is simply a named list of XML IDs.
			

 ⁠Example 11.7. Tag referencing three resources
​<tags>
​ <tag id="all-vms">
​ <obj_ref id="vm1"/>
​ <obj_ref id="vm2"/>
​ <obj_ref id="vm3"/>
​ </tag>
​</tags>

				What you can do with this new tag depends on what your higher-level tools support. For example, a tool might allow you to enable or disable all of the tagged resources at once, or show the status of just the tagged resources.
			

				A single configuration element can be listed in any number of tags.
			

 ⁠11.3.2. Using Tags in Constraints and Resource Sets

				Pacemaker itself only uses tags in constraints. If you supply a tag name instead of a resource name in any constraint, the constraint will apply to all resources listed in that tag.
			

 ⁠Example 11.8. Constraint using a tag
​<rsc_order id="order1" first="storage" then="all-vms" kind="Mandatory" />

				In the example above, assuming the all-vms tag is defined as in the previous example, the constraint will behave the same as:
			

 ⁠Example 11.9. Equivalent constraints without tags
​<rsc_order id="order1-1" first="storage" then="vm1" kind="Mandatory" />
​<rsc_order id="order1-2" first="storage" then="vm2" kind="Mandatory" />
​<rsc_order id="order1-3" first="storage" then="vm2" kind="Mandatory" />

				A tag may be used directly in the constraint, or indirectly by being listed in a resource set used in the constraint. When used in a resource set, an expanded tag will honor the set’s sequential property.
			

 ⁠Chapter 12. Utilization and Placement Strategy

 ⁠
		Pacemaker decides where to place a resource according to the resource allocation scores on every node. The resource will be allocated to the node where the resource has the highest score.
	

		If the resource allocation scores on all the nodes are equal, by the default placement strategy, Pacemaker will choose a node with the least number of allocated resources for balancing the load. If the number of resources on each node is equal, the first eligible node listed in the CIB will be chosen to run the resource.
	

		Often, in real-world situations, different resources use significantly different proportions of a node’s capacities (memory, I/O, etc.). We cannot balance the load ideally just according to the number of resources allocated to a node. Besides, if resources are placed such that their combined requirements exceed the provided capacity, they may fail to start completely or run with degraded performance.
	

		To take these factors into account, Pacemaker allows you to configure:
	
	
				The capacity a certain node provides.
			

	
				The capacity a certain resource requires.
			

	
				An overall strategy for placement of resources.
			

 ⁠12.1. Utilization attributes

			To configure the capacity that a node provides or a resource requires, you can use utilization attributes in node and resource objects. You can name utilization attributes according to your preferences and define as many name/value pairs as your configuration needs. However, the attributes' values must be integers.
		

 ⁠Example 12.1. Specifying CPU and RAM capacities of two nodes
​<node id="node1" type="normal" uname="node1">
​ <utilization id="node1-utilization">
​ <nvpair id="node1-utilization-cpu" name="cpu" value="2"/>
​ <nvpair id="node1-utilization-memory" name="memory" value="2048"/>
​ </utilization>
​</node>
​<node id="node2" type="normal" uname="node2">
​ <utilization id="node2-utilization">
​ <nvpair id="node2-utilization-cpu" name="cpu" value="4"/>
​ <nvpair id="node2-utilization-memory" name="memory" value="4096"/>
​ </utilization>
​</node>

 ⁠Example 12.2. Specifying CPU and RAM consumed by several resources
​<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy">
​ <utilization id="rsc-small-utilization">
​ <nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/>
​ <nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/>
​ </utilization>
​</primitive>
​<primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy">
​ <utilization id="rsc-medium-utilization">
​ <nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/>
​ <nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/>
​ </utilization>
​</primitive>
​<primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy">
​ <utilization id="rsc-large-utilization">
​ <nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/>
​ <nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/>
​ </utilization>
​</primitive>

			A node is considered eligible for a resource if it has sufficient free capacity to satisfy the resource’s requirements. The nature of the required or provided capacities is completely irrelevant to Pacemaker — it just makes sure that all capacity requirements of a resource are satisfied before placing a resource to a node.
		

 ⁠12.2. Placement Strategy

			After you have configured the capacities your nodes provide and the capacities your resources require, you need to set the placement-strategy in the global cluster options, otherwise the capacity configurations have no effect.
		

			Four values are available for the placement-strategy:
		
	default
	
						Utilization values are not taken into account at all. Resources are allocated according to allocation scores. If scores are equal, resources are evenly distributed across nodes.
					

	utilization
	
						Utilization values are taken into account only when deciding whether a node is considered eligible (i.e. whether it has sufficient free capacity to satisfy the resource’s requirements). Load-balancing is still done based on the number of resources allocated to a node.
					

	balanced
	
						Utilization values are taken into account when deciding whether a node is eligible to serve a resource and when load-balancing, so an attempt is made to spread the resources in a way that optimizes resource performance.
					

	minimal
	
						Utilization values are taken into account only when deciding whether a node is eligible to serve a resource. For load-balancing, an attempt is made to concentrate the resources on as few nodes as possible, thereby enabling possible power savings on the remaining nodes.
					

			Set placement-strategy with crm_attribute:
		
crm_attribute --name placement-strategy --update balanced

			Now Pacemaker will ensure the load from your resources will be distributed evenly throughout the cluster, without the need for convoluted sets of colocation constraints.
		

 ⁠12.3. Allocation Details

 ⁠12.3.1. Which node is preferred to get consumed first when allocating resources?

	
						The node with the highest node weight gets consumed first. Node weight is a score maintained by the cluster to represent node health.
					

	
						If multiple nodes have the same node weight:
					
	
								If placement-strategy is default or utilization, the node that has the least number of allocated resources gets consumed first.
							
	
										If their numbers of allocated resources are equal, the first eligible node listed in the CIB gets consumed first.
									

	
								If placement-strategy is balanced, the node that has the most free capacity gets consumed first.
							
	
										If the free capacities of the nodes are equal, the node that has the least number of allocated resources gets consumed first.
									
	
												If their numbers of allocated resources are equal, the first eligible node listed in the CIB gets consumed first.
											

	
								If placement-strategy is minimal, the first eligible node listed in the CIB gets consumed first.
							

 ⁠12.3.2. Which node has more free capacity?

				If only one type of utilization attribute has been defined, free capacity is a simple numeric comparison.
			

				If multiple types of utilization attributes have been defined, then the node that is numerically highest in the the most attribute types has the most free capacity. For example:
			
	
						If nodeA has more free cpus, and nodeB has more free memory, then their free capacities are equal.
					

	
						If nodeA has more free cpus, while nodeB has more free memory and storage, then nodeB has more free capacity.
					

 ⁠12.3.3. Which resource is preferred to be assigned first?

	
						The resource that has the highest priority (see Section 4.4, “Resource Options”) gets allocated first.
					

	
						If their priorities are equal, check whether they are already running. The resource that has the highest score on the node where it’s running gets allocated first, to prevent resource shuffling.
					

	
						If the scores above are equal or the resources are not running, the resource has the highest score on the preferred node gets allocated first.
					

	
						If the scores above are equal, the first runnable resource listed in the CIB gets allocated first.
					

 ⁠12.4. Limitations and Workarounds

			The type of problem Pacemaker is dealing with here is known as the knapsack problem and falls into the NP-complete category of computer science problems — a fancy way of saying "it takes a really long time to solve".
		

			Clearly in a HA cluster, it’s not acceptable to spend minutes, let alone hours or days, finding an optimal solution while services remain unavailable.
		

			So instead of trying to solve the problem completely, Pacemaker uses a best effort algorithm for determining which node should host a particular service. This means it arrives at a solution much faster than traditional linear programming algorithms, but by doing so at the price of leaving some services stopped.
		

			In the contrived example at the start of this section:
		
	
					rsc-small would be allocated to node1
				

	
					rsc-medium would be allocated to node2
				

	
					rsc-large would remain inactive
				

			Which is not ideal.
		

			There are various approaches to dealing with the limitations of pacemaker’s placement strategy:
		
	 Ensure you have sufficient physical capacity.
	
						It might sound obvious, but if the physical capacity of your nodes is (close to) maxed out by the cluster under normal conditions, then failover isn’t going to go well. Even without the utilization feature, you’ll start hitting timeouts and getting secondary failures.
					

	 Build some buffer into the capabilities advertised by the nodes.
	
						Advertise slightly more resources than we physically have, on the (usually valid) assumption that a resource will not use 100% of the configured amount of CPU, memory and so forth all the time. This practice is sometimes called overcommit.
					

	 Specify resource priorities.
	
						If the cluster is going to sacrifice services, it should be the ones you care about (comparatively) the least. Ensure that resource priorities are properly set so that your most important resources are scheduled first.
					

 ⁠Chapter 13. Access Control Lists (ACLs)

		
 ⁠
	

		By default, the root user or any user in the haclient group can modify Pacemaker’s CIB without restriction. Pacemaker offers access control lists (ACLs) to provide more fine-grained authorization.
	

 ⁠13.1. ACL Prerequisites

			In order to use ACLs:
		
	
					The Pacemaker software must have been compiled with ACL support. If the output of the command pacemakerd --features contains acls, your installation supports ACLs.
				

	
					Desired users must have user accounts in the haclient group on all nodes in the cluster.
				

	
					If your CIB was created before Pacemaker 1.1.12, it may need to be updated to the current schema using cibadmin --upgrade in order to use the syntax documented here.
				

	
					The enable-acl cluster option must be set to true.
				

 ⁠13.2. ACL Configuration

			ACLs are specified within an acls element of the CIB. The acls element may contain any number of acl_role, acl_target, and acl_group elements.
		

 ⁠13.3. ACL Roles

			An ACL role is a collection of permissions allowing or denying access to particular portions of the CIB.
		

 ⁠Table 13.1. Properties of an ACL Role
	Attribute	Description
	
						
							id
						

							
						
							A unique name for the role (required)
						

						
	
						
							description
						

							
						
							Arbitrary text (not used by Pacemaker)
						

						

			An acl_role element may contain any number of acl_permission elements.
		

 ⁠Table 13.2. Properties of an ACL Permission
	Attribute	Description
	
						
							id
						

							
						
							A unique name for the permission (required)
						

						
	
						
							description
						

							
						
							Arbitrary text (not used by Pacemaker)
						

						
	
						
							kind
						

							
						
							The access being granted. Allowed values are read, write, and deny. A value of write grants both read and write access.
						

						
	
						
							object-type
						

							
						
							The name of an XML element in the CIB to which the permission applies. (Exactly one of object-type, xpath, and reference must be specified for a permission.)
						

						
	
						
							attribute
						

							
						
							If specified, the permission applies only to object-type elements that have this attribute set (to any value). If not specified, the permission applies to all object-type elements. May only be used with object-type.
						

						
	
						
							reference
						

							
						
							The ID of an XML element in the CIB to which the permission applies. (Exactly one of object-type, xpath, and reference must be specified for a permission.)
						

						
	
						
							xpath
						

							
						
							An XPath specification selecting an XML element in the CIB to which the permission applies. Attributes may be specified in the XPath to select particular elements, but the permissions apply to the entire element. (Exactly one of object-type, xpath, and reference must be specified for a permission.)
						

						

Important

	
						Permissions are applied to the selected XML element’s entire XML subtree (all elements enclosed within it).
					

	
						Write permission grants the ability to create, modify, or remove the element and its subtree, and also the ability to create any "scaffolding" elements (enclosing elements that do not have attributes other than an ID).
					

	
						Permissions for more specific matches (more deeply nested elements) take precedence over more general ones.
					

	
						If multiple permissions are configured for the same match (for example, in different roles applied to the same user), any deny permission takes precedence, then write, then lastly read.
					

 ⁠13.4. ACL Targets and Groups

			ACL targets correspond to user accounts on the system.
		

 ⁠Table 13.3. Properties of an ACL Target
	Attribute	Description
	
						
							id
						

							
						
							The name of a user on the system (required)
						

						

			ACL groups may be specified, but are not currently used by Pacemaker. This is expected to change in a future version.
		

 ⁠Table 13.4. Properties of an ACL Group
	Attribute	Description
	
						
							id
						

							
						
							The name of a group on the system (required)
						

						

			Each acl_target and acl_group element may contain any number of role elements.
		

 ⁠Table 13.5. Properties of an ACL Role Reference
	Attribute	Description
	
						
							id
						

							
						
							The id of an acl_role element that specifies permissions granted to the enclosing target or group
						

						

Important

				The root and hacluster user accounts always have full access to the CIB, regardless of ACLs. For other user accounts, when enable-acl is true, permission to all parts of the CIB is denied by default (permissions must be explicitly granted).
			

 ⁠13.5. ACL Examples

​<acls>
​
​ <acl_role id="read_all">
​ <acl_permission id="read_all-cib" kind="read" xpath="/cib" />
​ </acl_role>
​
​ <acl_role id="operator">
​
​ <acl_permission id="operator-maintenance-mode" kind="write"
​ xpath="//crm_config//nvpair[@name='maintenance-mode']" />
​
​ <acl_permission id="operator-maintenance-attr" kind="write"
​ xpath="//nvpair[@name='maintenance']" />
​
​ <acl_permission id="operator-target-role" kind="write"
​ xpath="//resources//meta_attributes/nvpair[@name='target-role']" />
​
​ <acl_permission id="operator-is-managed" kind="write"
​ xpath="//resources//nvpair[@name='is-managed']" />
​
​ <acl_permission id="operator-rsc_location" kind="write"
​ object-type="rsc_location" />
​
​ </acl_role>
​
​ <acl_role id="administrator">
​ <acl_permission id="administrator-cib" kind="write" xpath="/cib" />
​ </acl_role>
​
​ <acl_role id="minimal">
​
​ <acl_permission id="minimal-standby" kind="read"
​ description="allow reading standby node attribute (permanent or transient)"
​ xpath="//instance_attributes/nvpair[@name='standby']"/>
​
​ <acl_permission id="minimal-maintenance" kind="read"
​ description="allow reading maintenance node attribute (permanent or transient)"
​ xpath="//nvpair[@name='maintenance']"/>
​
​ <acl_permission id="minimal-target-role" kind="read"
​ description="allow reading resource target roles"
​ xpath="//resources//meta_attributes/nvpair[@name='target-role']"/>
​
​ <acl_permission id="minimal-is-managed" kind="read"
​ description="allow reading resource managed status"
​ xpath="//resources//meta_attributes/nvpair[@name='is-managed']"/>
​
​ <acl_permission id="minimal-deny-instance-attributes" kind="deny"
​ xpath="//instance_attributes"/>
​
​ <acl_permission id="minimal-deny-meta-attributes" kind="deny"
​ xpath="//meta_attributes"/>
​
​ <acl_permission id="minimal-deny-operations" kind="deny"
​ xpath="//operations"/>
​
​ <acl_permission id="minimal-deny-utilization" kind="deny"
​ xpath="//utilization"/>
​
​ <acl_permission id="minimal-nodes" kind="read"
​ description="allow reading node names/IDs (attributes are denied separately)"
​ xpath="/cib/configuration/nodes"/>
​
​ <acl_permission id="minimal-resources" kind="read"
​ description="allow reading resource names/agents (parameters are denied separately)"
​ xpath="/cib/configuration/resources"/>
​
​ <acl_permission id="minimal-deny-constraints" kind="deny"
​ xpath="/cib/configuration/constraints"/>
​
​ <acl_permission id="minimal-deny-topology" kind="deny"
​ xpath="/cib/configuration/fencing-topology"/>
​
​ <acl_permission id="minimal-deny-op_defaults" kind="deny"
​ xpath="/cib/configuration/op_defaults"/>
​
​ <acl_permission id="minimal-deny-rsc_defaults" kind="deny"
​ xpath="/cib/configuration/rsc_defaults"/>
​
​ <acl_permission id="minimal-deny-alerts" kind="deny"
​ xpath="/cib/configuration/alerts"/>
​
​ <acl_permission id="minimal-deny-acls" kind="deny"
​ xpath="/cib/configuration/acls"/>
​
​ <acl_permission id="minimal-cib" kind="read"
​ description="allow reading cib element and crm_config/status sections"
​ xpath="/cib"/>
​
​ </acl_role>
​
​ <acl_target id="alice">
​ <role id="minimal"/>
​ </acl_target>
​
​ <acl_target id="bob">
​ <role id="read_all"/>
​ </acl_target>
​
​ <acl_target id="carol">
​ <role id="read_all"/>
​ <role id="operator"/>
​ </acl_target>
​
​ <acl_target id="dave">
​ <role id="administrator"/>
​ </acl_target>
​
​</acls>

			In the above example, the user alice has the minimal permissions necessary to run basic Pacemaker CLI tools, including using crm_mon to view the cluster status, without being able to modify anything. The user bob can view the entire configuration and status of the cluster, but not make any changes. The user carol can read everything, and change selected cluster properties as well as resource roles and location constraints. Finally, dave has full read and write access to the entire CIB.
		

			Looking at the minimal role in more depth, it is designed to allow read access to the cib tag itself, while denying access to particular portions of its subtree (which is the entire CIB).
		

			This is because the DC node is indicated in the cib tag, so crm_mon will not be able to report the DC otherwise. However, this does change the security model to allow by default, since any portions of the CIB not explicitly denied will be readable. The cib read access could be removed and replaced with read access to just the crm_config and status sections, for a safer approach at the cost of not seeing the DC in status output.
		

			For a simpler configuration, the minimal role allows read access to the entire crm_config section, which contains cluster properties. It would be possible to allow read access to specific properties instead (such as stonith-enabled, dc-uuid, have-quorum, and cluster-name) to restrict access further while still allowing status output, but cluster properties are unlikely to be considered sensitive.
		

 ⁠Chapter 14. Status — Here be dragons

		Most users never need to understand the contents of the status section and can be happy with the output from crm_mon.
	

		However for those with a curious inclination, this section attempts to provide an overview of its contents.
	

 ⁠14.1. Node Status

			
		

			In addition to the cluster’s configuration, the CIB holds an up-to-date representation of each cluster node in the status section.
		

 ⁠Example 14.1. A bare-bones status entry for a healthy node cl-virt-1
​ <node_state id="1" uname="cl-virt-1" in_ccm="true" crmd="online" crm-debug-origin="do_update_resource" join="member" expected="member">
​ <transient_attributes id="1"/>
​ <lrm id="1"/>
​ </node_state>

			Users are highly recommended not to modify any part of a node’s state directly. The cluster will periodically regenerate the entire section from authoritative sources, so any changes should be done with the tools appropriate to those sources.
		

 ⁠Table 14.1. Authoritative Sources for State Information
	 CIB Object 	 Authoritative Source
	
						
							node_state
						

							
						
							pacemaker-controld
						

						
	
						
							transient_attributes
						

							
						
							pacemaker-attrd
						

						
	
						
							lrm
						

							
						
							pacemaker-execd
						

						

			The fields used in the node_state objects are named as they are largely for historical reasons and are rooted in Pacemaker’s origins as the resource manager for the older Heartbeat project. They have remained unchanged to preserve compatibility with older versions.
		

 ⁠Table 14.2. Node Status Fields
	Field 	Description
	
						
							id
						

							
						
							 Unique identifier for the node. Corosync-based clusters use a numeric counter.
						

						
	
						
							uname
						

							
						
							 The node’s name as known by the cluster
						

						
	
						
							in_ccm
						

							
						
							 Is the node a member at the cluster communication layer? Allowed values: true, false.
						

						
	
						
							crmd
						

							
						
							 Is the node a member at the pacemaker layer? Allowed values: online, offline.
						

						
	
						
							crm-debug-origin
						

							
						
							 The name of the source function that made the most recent change (for debugging purposes).
						

						
	
						
							join
						

							
						
							 Does the node participate in hosting resources? Allowed values: down, pending, member, banned.
						

						
	
						
							expected
						

							
						
							 Expected value for join.
						

						

			The cluster uses these fields to determine whether, at the node level, the node is healthy or is in a failed state and needs to be fenced.
		

 ⁠14.2. Transient Node Attributes

			Like regular node attributes, the name/value pairs listed in the transient_attributes section help to describe the node. However they are forgotten by the cluster when the node goes offline. This can be useful, for instance, when you want a node to be in standby mode (not able to run resources) just until the next reboot.
		

			In addition to any values the administrator sets, the cluster will also store information about failed resources here.
		

 ⁠Example 14.2. A set of transient node attributes for node cl-virt-1
​<transient_attributes id="cl-virt-1">
​ <instance_attributes id="status-cl-virt-1">
​ <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
​ <nvpair id="status-cl-virt-1-probe_complete" name="probe_complete" value="true"/>
​ <nvpair id="status-cl-virt-1-fail-count-pingd:0.monitor_30000" name="fail-count-pingd:0#monitor_30000" value="1"/>
​ <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0" value="1239009742"/>
​ </instance_attributes>
​</transient_attributes>

			In the above example, we can see that a monitor on the pingd:0 resource has failed once, at 09:22:22 UTC 6 April 2009.
 ⁠[18] We also see that the node is connected to three pingd peers and that all known resources have been checked for on this machine (probe_complete).
		

 ⁠14.3. Operation History

			
		

			A node’s resource history is held in the lrm_resources tag (a child of the lrm tag). The information stored here includes enough information for the cluster to stop the resource safely if it is removed from the configuration section. Specifically, the resource’s id, class, type and provider are stored.
		

 ⁠Example 14.3. A record of the apcstonith resource
​<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith"/>

			Additionally, we store the last job for every combination of resource, action and interval. The concatenation of the values in this tuple are used to create the id of the lrm_rsc_op object.
		

 ⁠Table 14.3. Contents of an lrm_rsc_op job
	Field	Description
	
						
							id
						

							
						
							
						

						
							Identifier for the job constructed from the resource’s id, operation and interval.
						

						
	
						
							call-id
						

							
						
							
						

						
							The job’s ticket number. Used as a sort key to determine the order in which the jobs were executed.
						

						
	
						
							operation
						

							
						
							
						

						
							The action the resource agent was invoked with.
						

						
	
						
							interval
						

							
						
							
						

						
							The frequency, in milliseconds, at which the operation will be repeated. A one-off job is indicated by 0.
						

						
	
						
							op-status
						

							
						
							
						

						
							The job’s status. Generally this will be either 0 (done) or -1 (pending). Rarely used in favor of rc-code.
						

						
	
						
							rc-code
						

							
						
							
						

						
							The job’s result. Refer to the Resource Agents section of Pacemaker Administration for details on what the values here mean and how they are interpreted.
						

						
	
						
							last-run
						

							
						
							
						

						
							Machine-local date/time, in seconds since epoch, at which the job was executed. For diagnostic purposes.
						

						
	
						
							last-rc-change
						

							
						
							
						

						
							Machine-local date/time, in seconds since epoch, at which the job first returned the current value of rc-code. For diagnostic purposes.
						

						
	
						
							exec-time
						

							
						
							
						

						
							Time, in milliseconds, that the job was running for. For diagnostic purposes.
						

						
	
						
							queue-time
						

							
						
							
						

						
							Time, in seconds, that the job was queued for in the LRMd. For diagnostic purposes.
						

						
	
						
							crm_feature_set
						

							
						
							
						

						
							The version which this job description conforms to. Used when processing op-digest.
						

						
	
						
							transition-key
						

							
						
							
						

						
							A concatenation of the job’s graph action number, the graph number, the expected result and the UUID of the controller instance that scheduled it. This is used to construct transition-magic (below).
						

						
	
						
							transition-magic
						

							
						
							
						

						
							A concatenation of the job’s op-status, rc-code and transition-key. Guaranteed to be unique for the life of the cluster (which ensures it is part of CIB update notifications) and contains all the information needed for the controller to correctly analyze and process the completed job. Most importantly, the decomposed elements tell the controller if the job entry was expected and whether it failed.
						

						
	
						
							op-digest
						

							
						
							
						

						
							An MD5 sum representing the parameters passed to the job. Used to detect changes to the configuration, to restart resources if necessary.
						

						
	
						
							crm-debug-origin
						

							
						
							
						

						
							The origin of the current values. For diagnostic purposes.
						

						

 ⁠14.3.1. Simple Operation History Example

 ⁠Example 14.4. A monitor operation (determines current state of the apcstonith resource)
​<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith">
​ <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2"
​ rc-code="7" op-status="0" interval="0"
​ crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
​ op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
​ transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ last-run="1239008085" last-rc-change="1239008085" exec-time="10" queue-time="0"/>
​</lrm_resource>

				In the above example, the job is a non-recurring monitor operation often referred to as a "probe" for the apcstonith resource.
			

				The cluster schedules probes for every configured resource on a node when the node first starts, in order to determine the resource’s current state before it takes any further action.
			

				From the transition-key, we can see that this was the 22nd action of the 2nd graph produced by this instance of the controller (2668bbeb-06d5-40f9-936d-24cb7f87006a).
			

				The third field of the transition-key contains a 7, which indicates that the job expects to find the resource inactive. By looking at the rc-code property, we see that this was the case.
			

				As that is the only job recorded for this node, we can conclude that the cluster started the resource elsewhere.
			

 ⁠14.3.2. Complex Operation History Example

 ⁠Example 14.5. Resource history of a pingd clone with multiple jobs
​<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
​ <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34"
​ rc-code="0" op-status="0" interval="30000"
​ crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
​ transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ ...
​ last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
​ <lrm_rsc_op id="pingd:0_stop_0" operation="stop"
​ crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32"
​ rc-code="0" op-status="0" interval="0"
​ transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ ...
​ last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
​ <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33"
​ rc-code="0" op-status="0" interval="0"
​ crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
​ transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ ...
​ last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0" />
​ <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3"
​ rc-code="0" op-status="0" interval="0"
​ crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
​ transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
​ ...
​ last-run="1239008085" last-rc-change="1239008085" exec-time="20" queue-time="0"/>
​ </lrm_resource>

				When more than one job record exists, it is important to first sort them by call-id before interpreting them.
			

				Once sorted, the above example can be summarized as:
			
	
						A non-recurring monitor operation returning 7 (not running), with a call-id of 3
					

	
						A stop operation returning 0 (success), with a call-id of 32
					

	
						A start operation returning 0 (success), with a call-id of 33
					

	
						A recurring monitor returning 0 (success), with a call-id of 34
					

				The cluster processes each job record to build up a picture of the resource’s state. After the first and second entries, it is considered stopped, and after the third it considered active.
			

				Based on the last operation, we can tell that the resource is currently active.
			

				Additionally, from the presence of a stop operation with a lower call-id than that of the start operation, we can conclude that the resource has been restarted. Specifically this occurred as part of actions 11 and 31 of transition 11 from the controller instance with the key 2668bbeb…. This information can be helpful for locating the relevant section of the logs when looking for the source of a failure.
			

[18]
				You can use the standard date command to print a human-readable version of any seconds-since-epoch value, for example date -d @1239009742.
			

 ⁠Chapter 15. Multi-Site Clusters and Tickets

		Apart from local clusters, Pacemaker also supports multi-site clusters. That means you can have multiple, geographically dispersed sites, each with a local cluster. Failover between these clusters can be coordinated manually by the administrator, or automatically by a higher-level entity called a Cluster Ticket Registry (CTR).
	

 ⁠15.1. Challenges for Multi-Site Clusters

			Typically, multi-site environments are too far apart to support synchronous communication and data replication between the sites. That leads to significant challenges:
		
	
					How do we make sure that a cluster site is up and running?
				

	
					How do we make sure that resources are only started once?
				

	
					How do we make sure that quorum can be reached between the different sites and a split-brain scenario avoided?
				

	
					How do we manage failover between sites?
				

	
					How do we deal with high latency in case of resources that need to be stopped?
				

			In the following sections, learn how to meet these challenges.
		

 ⁠15.2. Conceptual Overview

			Multi-site clusters can be considered as “overlay” clusters where each cluster site corresponds to a cluster node in a traditional cluster. The overlay cluster can be managed by a CTR in order to guarantee that any cluster resource will be active on no more than one cluster site. This is achieved by using tickets that are treated as failover domain between cluster sites, in case a site should be down.
		

			The following sections explain the individual components and mechanisms that were introduced for multi-site clusters in more detail.
		

 ⁠15.2.1. Ticket

				Tickets are, essentially, cluster-wide attributes. A ticket grants the right to run certain resources on a specific cluster site. Resources can be bound to a certain ticket by rsc_ticket constraints. Only if the ticket is available at a site can the respective resources be started there. Vice versa, if the ticket is revoked, the resources depending on that ticket must be stopped.
			

				The ticket thus is similar to a site quorum, i.e. the permission to manage/own resources associated with that site. (One can also think of the current have-quorum flag as a special, cluster-wide ticket that is granted in case of node majority.)
			

				Tickets can be granted and revoked either manually by administrators (which could be the default for classic enterprise clusters), or via the automated CTR mechanism described below.
			

				A ticket can only be owned by one site at a time. Initially, none of the sites has a ticket. Each ticket must be granted once by the cluster administrator.
			

				The presence or absence of tickets for a site is stored in the CIB as a cluster status. With regards to a certain ticket, there are only two states for a site: true (the site has the ticket) or false (the site does not have the ticket). The absence of a certain ticket (during the initial state of the multi-site cluster) is the same as the value false.
			

 ⁠15.2.2. Dead Man Dependency

				A site can only activate resources safely if it can be sure that the other site has deactivated them. However after a ticket is revoked, it can take a long time until all resources depending on that ticket are stopped "cleanly", especially in case of cascaded resources. To cut that process short, the concept of a Dead Man Dependency was introduced.
			

				If a dead man dependency is in force, if a ticket is revoked from a site, the nodes that are hosting dependent resources are fenced. This considerably speeds up the recovery process of the cluster and makes sure that resources can be migrated more quickly.
			

				This can be configured by specifying a loss-policy="fence" in rsc_ticket constraints.
			

 ⁠15.2.3. Cluster Ticket Registry

				A CTR is a coordinated group of network daemons that automatically handles granting, revoking, and timing out tickets (instead of the administrator revoking the ticket somewhere, waiting for everything to stop, and then granting it on the desired site).
			

				Pacemaker does not implement its own CTR, but interoperates with external software designed for that purpose (similar to how resource and fencing agents are not directly part of pacemaker).
			

				Participating clusters run the CTR daemons, which connect to each other, exchange information about their connectivity, and vote on which sites gets which tickets.
			

				A ticket is granted to a site only once the CTR is sure that the ticket has been relinquished by the previous owner, implemented via a timer in most scenarios. If a site loses connection to its peers, its tickets time out and recovery occurs. After the connection timeout plus the recovery timeout has passed, the other sites are allowed to re-acquire the ticket and start the resources again.
			

				This can also be thought of as a "quorum server", except that it is not a single quorum ticket, but several.
			

 ⁠15.2.4. Configuration Replication

				As usual, the CIB is synchronized within each cluster, but it is not synchronized across cluster sites of a multi-site cluster. You have to configure the resources that will be highly available across the multi-site cluster for every site accordingly.
			

 ⁠15.3. Configuring Ticket Dependencies

			The rsc_ticket constraint lets you specify the resources depending on a certain ticket. Together with the constraint, you can set a loss-policy that defines what should happen to the respective resources if the ticket is revoked.
		

			The attribute loss-policy can have the following values:
		
	
					fence: Fence the nodes that are running the relevant resources.
				

	
					stop: Stop the relevant resources.
				

	
					freeze: Do nothing to the relevant resources.
				

	
					demote: Demote relevant resources that are running in master mode to slave mode.
				

 ⁠Example 15.1. Constraint that fences node if ticketA is revoked
​<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>

			The example above creates a constraint with the ID rsc1-req-ticketA. It defines that the resource rsc1 depends on ticketA and that the node running the resource should be fenced if ticketA is revoked.
		

			If resource rsc1 were a promotable resource (i.e. it could run in master or slave mode), you might want to configure that only master mode depends on ticketA. With the following configuration, rsc1 will be demoted to slave mode if ticketA is revoked:
		

 ⁠Example 15.2. Constraint that demotes rsc1 if ticketA is revoked
​<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Master" ticket="ticketA" loss-policy="demote"/>

			You can create multiple rsc_ticket constraints to let multiple resources depend on the same ticket. However, rsc_ticket also supports resource sets (see Section 5.5, “Resource Sets”), so one can easily list all the resources in one rsc_ticket constraint instead.
		

 ⁠Example 15.3. Ticket constraint for multiple resources
​<rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence">
​ <resource_set id="resources-dep-ticketA-0" role="Started">
​ <resource_ref id="rsc1"/>
​ <resource_ref id="group1"/>
​ <resource_ref id="clone1"/>
​ </resource_set>
​ <resource_set id="resources-dep-ticketA-1" role="Master">
​ <resource_ref id="ms1"/>
​ </resource_set>
​</rsc_ticket>

			In the example above, there are two resource sets, so we can list resources with different roles in a single rsc_ticket constraint. There’s no dependency between the two resource sets, and there’s no dependency among the resources within a resource set. Each of the resources just depends on ticketA.
		

			Referencing resource templates in rsc_ticket constraints, and even referencing them within resource sets, is also supported.
		

			If you want other resources to depend on further tickets, create as many constraints as necessary with rsc_ticket.
		

 ⁠15.4. Managing Multi-Site Clusters

 ⁠15.4.1. Granting and Revoking Tickets Manually

				You can grant tickets to sites or revoke them from sites manually. If you want to re-distribute a ticket, you should wait for the dependent resources to stop cleanly at the previous site before you grant the ticket to the new site.
			

				Use the crm_ticket command line tool to grant and revoke tickets.
			

				To grant a ticket to this site:
			
crm_ticket --ticket ticketA --grant

				To revoke a ticket from this site:
			
crm_ticket --ticket ticketA --revoke
Important

					If you are managing tickets manually, use the crm_ticket command with great care, because it cannot check whether the same ticket is already granted elsewhere.
				

 ⁠15.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry

				We will use Booth here as an example of software that can be used with pacemaker as a Cluster Ticket Registry. Booth implements the Raft algorithm to guarantee the distributed consensus among different cluster sites, and manages the ticket distribution (and thus the failover process between sites).
			

				Each of the participating clusters and arbitrators runs the Booth daemon boothd.
			

				An arbitrator is the multi-site equivalent of a quorum-only node in a local cluster. If you have a setup with an even number of sites, you need an additional instance to reach consensus about decisions such as failover of resources across sites. In this case, add one or more arbitrators running at additional sites. Arbitrators are single machines that run a booth instance in a special mode. An arbitrator is especially important for a two-site scenario, otherwise there is no way for one site to distinguish between a network failure between it and the other site, and a failure of the other site.
			

				The most common multi-site scenario is probably a multi-site cluster with two sites and a single arbitrator on a third site. However, technically, there are no limitations with regards to the number of sites and the number of arbitrators involved.
			

				Boothd at each site connects to its peers running at the other sites and exchanges connectivity details. Once a ticket is granted to a site, the booth mechanism will manage the ticket automatically: If the site which holds the ticket is out of service, the booth daemons will vote which of the other sites will get the ticket. To protect against brief connection failures, sites that lose the vote (either explicitly or implicitly by being disconnected from the voting body) need to relinquish the ticket after a time-out. Thus, it is made sure that a ticket will only be re-distributed after it has been relinquished by the previous site. The resources that depend on that ticket will fail over to the new site holding the ticket. The nodes that have run the resources before will be treated according to the loss-policy you set within the rsc_ticket constraint.
			

				Before the booth can manage a certain ticket within the multi-site cluster, you initially need to grant it to a site manually via the booth command-line tool. After you have initially granted a ticket to a site, boothd will take over and manage the ticket automatically.
			
Important

					The booth command-line tool can be used to grant, list, or revoke tickets and can be run on any machine where boothd is running. If you are managing tickets via Booth, use only booth for manual intervention, not crm_ticket. That ensures the same ticket will only be owned by one cluster site at a time.
				

 ⁠15.4.2.1. Booth Requirements

	
							All clusters that will be part of the multi-site cluster must be based on Pacemaker.
						

	
							Booth must be installed on all cluster nodes and on all arbitrators that will be part of the multi-site cluster.
						

	
							Nodes belonging to the same cluster site should be synchronized via NTP. However, time synchronization is not required between the individual cluster sites.
						

 ⁠15.4.3. General Management of Tickets

				Display the information of tickets:
			
crm_ticket --info

				Or you can monitor them with:
			
crm_mon --tickets

				Display the rsc_ticket constraints that apply to a ticket:
			
crm_ticket --ticket ticketA --constraints

				When you want to do maintenance or manual switch-over of a ticket, revoking the ticket would trigger the loss policies. If loss-policy="fence", the dependent resources could not be gracefully stopped/demoted, and other unrelated resources could even be affected.
			

				The proper way is making the ticket standby first with:
			
crm_ticket --ticket ticketA --standby

				Then the dependent resources will be stopped or demoted gracefully without triggering the loss policies.
			

				If you have finished the maintenance and want to activate the ticket again, you can run:
			
crm_ticket --ticket ticketA --activate

 ⁠15.5. For more information

	
					SUSE’s Geo Clustering quick start
				

	
					Booth
				

 ⁠Appendix A. Sample Configurations

 ⁠A.1. Empty

 ⁠Example A.1. An Empty Configuration
​<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
​ <configuration>
​ <crm_config/>
​ <nodes/>
​ <resources/>
​ <constraints/>
​ </configuration>
​ <status/>
​</cib>

 ⁠A.2. Simple

 ⁠Example A.2. A simple configuration with two nodes, some cluster options and a resource
​<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
​ <configuration>
​ <crm_config>
​ <cluster_property_set id="cib-bootstrap-options">
​ <nvpair id="option-1" name="symmetric-cluster" value="true"/>
​ <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
​ <nvpair id="option-3" name="stonith-enabled" value="0"/>
​ </cluster_property_set>
​ </crm_config>
​ <nodes>
​ <node id="xxx" uname="c001n01" type="normal"/>
​ <node id="yyy" uname="c001n02" type="normal"/>
​ </nodes>
​ <resources>
​ <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
​ <operations>
​ <op id="myAddr-monitor" name="monitor" interval="300s"/>
​ </operations>
​ <instance_attributes id="myAddr-params">
​ <nvpair id="myAddr-ip" name="ip" value="192.0.2.10"/>
​ </instance_attributes>
​ </primitive>
​ </resources>
​ <constraints>
​ <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
​ </constraints>
​ <rsc_defaults>
​ <meta_attributes id="rsc_defaults-options">
​ <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
​ <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
​ </meta_attributes>
​ </rsc_defaults>
​ <op_defaults>
​ <meta_attributes id="op_defaults-options">
​ <nvpair id="op-default-1" name="timeout" value="30s"/>
​ </meta_attributes>
​ </op_defaults>
​ </configuration>
​ <status/>
​</cib>

			In the above example, we have one resource (an IP address) that we check every five minutes and will run on host c001n01 until either the resource fails 10 times or the host shuts down.
		

 ⁠A.3. Advanced Configuration

 ⁠Example A.3. An advanced configuration with groups, clones and STONITH
​<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
​ <configuration>
​ <crm_config>
​ <cluster_property_set id="cib-bootstrap-options">
​ <nvpair id="option-1" name="symmetric-cluster" value="true"/>
​ <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
​ <nvpair id="option-3" name="stonith-enabled" value="true"/>
​ </cluster_property_set>
​ </crm_config>
​ <nodes>
​ <node id="xxx" uname="c001n01" type="normal"/>
​ <node id="yyy" uname="c001n02" type="normal"/>
​ <node id="zzz" uname="c001n03" type="normal"/>
​ </nodes>
​ <resources>
​ <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
​ <operations>
​ <op id="myAddr-monitor" name="monitor" interval="300s"/>
​ </operations>
​ <instance_attributes id="myAddr-attrs">
​ <nvpair id="myAddr-attr-1" name="ip" value="192.0.2.10"/>
​ </instance_attributes>
​ </primitive>
​ <group id="myGroup">
​ <primitive id="database" class="lsb" type="oracle">
​ <operations>
​ <op id="database-monitor" name="monitor" interval="300s"/>
​ </operations>
​ </primitive>
​ <primitive id="webserver" class="lsb" type="apache">
​ <operations>
​ <op id="webserver-monitor" name="monitor" interval="300s"/>
​ </operations>
​ </primitive>
​ </group>
​ <clone id="STONITH">
​ <meta_attributes id="stonith-options">
​ <nvpair id="stonith-option-1" name="globally-unique" value="false"/>
​ </meta_attributes>
​ <primitive id="stonithclone" class="stonith" type="external/ssh">
​ <operations>
​ <op id="stonith-op-mon" name="monitor" interval="5s"/>
​ </operations>
​ <instance_attributes id="stonith-attrs">
​ <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
​ </instance_attributes>
​ </primitive>
​ </clone>
​ </resources>
​ <constraints>
​ <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01"
​ score="INFINITY"/>
​ <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr"
​ score="INFINITY"/>
​ </constraints>
​ <op_defaults>
​ <meta_attributes id="op_defaults-options">
​ <nvpair id="op-default-1" name="timeout" value="30s"/>
​ </meta_attributes>
​ </op_defaults>
​ <rsc_defaults>
​ <meta_attributes id="rsc_defaults-options">
​ <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
​ <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
​ </meta_attributes>
​ </rsc_defaults>
​ </configuration>
​ <status/>
​</cib>

 ⁠Appendix B. Revision History

			Revision History
	Revision 1-0	19 Oct 2009	Andrew Beekhof
	
						Import from Pages.app

				
	Revision 2-0	26 Oct 2009	Andrew Beekhof
	
						Cleanup and reformatting of docbook xml complete

				
	Revision 3-0	Tue Nov 12 2009	Andrew Beekhof
	
						Split book into chapters and pass validation
	Re-organize book for use with Publican

				
	Revision 3-1	Tue Nov 12 2009	Tanja Roth, Lars Marowsky-Bree, Yan Gao, Thomas Schraitle, Dejan Muhamedagic
	
						Utilization chapter
	Resource Templates chapter
	Multi-Site Clusters chapter

				
	Revision 3-2	Fri Nov 4 2011	Philipp Marek
	
						Extensive style, formatting, and indexing updates

				
	Revision 4-0	Mon Oct 8 2012	Andrew Beekhof
	
						 Converted to asciidoc (which is converted to docbook for use with Publican)

				
	Revision 5-0	Mon Feb 23 2015	Ken Gaillot
	
						 Update for clarity, stylistic consistency and current command-line syntax

				
	Revision 6-0	Tue Dec 8 2015	Ken Gaillot
	
						 Update for Pacemaker 1.1.14

				
	Revision 7-0	Tue May 3 2016	Ken Gaillot
	
						 Update for Pacemaker 1.1.15

				
	Revision 7-1	Fri Oct 28 2016	Ken Gaillot
	
						 Overhaul upgrade documentation, and document node health strategies

				
	Revision 8-0	Tue Oct 25 2016	Ken Gaillot
	
						 Update for Pacemaker 1.1.16

				
	Revision 9-0	Tue Jul 11 2017	Ken Gaillot
	
						 Update for Pacemaker 1.1.17

				
	Revision 10-0	Fri Oct 6 2017	Ken Gaillot
	
						 Update for Pacemaker 1.1.18

				
	Revision 11-0	Fri Jan 12 2018	Ken Gaillot
	
						 Update for Pacemaker 2.0.0

				
	Revision 12-0	Mon Jan 28 2019	Ken Gaillot, Reid Wahl, Jan Pokorný
	
						 Update for Pacemaker 2.0.1, remove "Further Reading" and "FAQ" sections, and add minor clarifications and reformatting

				
	Revision 12-1	Mon May 13 2019	Ken Gaillot, Maciej Sobkowiak
	
						 Document podman support, cluster-name cluster option, and new HealthIOWait agent, with other minor clarifications and corrections

				
	Revision 12-2	Wed Jun 19 2019	Ken Gaillot
	
						 Add chapter for ACLs

				
	Revision 13-0	Tue Oct 15 2019	Ken Gaillot
	
						Overhaul fencing, rules, and constraints chapters, elaborate on various options, and update for Pacemaker 2.0.3

				
	Revision 13-1	Wed Apr 1 2020	Yan Gao
	
						Document new feature priority-fencing-delay

				

	

 ⁠Index

Symbols
	#digests-, Special node attributes
		Node attribute, Special node attributes

	#node-unfenced, Special node attributes
		Node attribute, Special node attributes

A
	access control list, Access Control Lists (ACLs)
		acl_group
		id, ACL Targets and Groups

	acl_permission
		attribute, ACL Roles
	description, ACL Roles
	id, ACL Roles
	kind, ACL Roles
	object-type, ACL Roles
	reference, ACL Roles
	xpath, ACL Roles

	acl_role
		description, ACL Roles
	id, ACL Roles

	acl_target
		id, ACL Targets and Groups

	role
		id, ACL Targets and Groups

	ACL, Access Control Lists (ACLs)
	acl_group, ACL Targets and Groups
		id, ACL Targets and Groups

	acl_permission, ACL Roles
		attribute, ACL Roles
	description, ACL Roles
	id, ACL Roles
	kind, ACL Roles
	object-type, ACL Roles
	reference, ACL Roles
	xpath, ACL Roles

	acl_role, ACL Roles
		description, ACL Roles
	id, ACL Roles

	acl_target, ACL Targets and Groups
		id, ACL Targets and Groups

	Action, Resource Operations
		Property
		enabled, Operation Properties
	id, Operation Properties
	interval, Operation Properties
	name, Operation Properties
	on-fail, Operation Properties
	role, Operation Properties
	timeout, Operation Properties

	Status
		call-id, Operation History
	crm-debug-origin, Operation History
	crm_feature_set, Operation History
	exec-time, Operation History
	id, Operation History
	interval, Operation History
	last-rc-change, Operation History
	last-run, Operation History
	op-digest, Operation History
	op-status, Operation History
	operation, Operation History
	queue-time, Operation History
	rc-code, Operation History
	transition-key, Operation History
	transition-magic, Operation History

	action, Using Promotable Clone Resources in Ordered Sets
		Ordering Constraints, Using Promotable Clone Resources in Ordered Sets

	action attribute, Resource Sets
		resource_set element, Resource Sets

	Action Property, Operation Properties
	Action Status, Operation History
	active_resource, Clone Notifications
		Notification Environment Variable, Clone Notifications

	active_uname, Clone Notifications
		Notification Environment Variable, Clone Notifications

	add-host attribute, Bundle Network Properties
		network element, Bundle Network Properties

	admin_epoch, CIB Properties
		Cluster Option, CIB Properties

	Alert
		Option
		timeout, Alert Meta-Attributes
	timestamp-format, Alert Meta-Attributes

	Alerts, Alerts
	Asymmetrical Clusters, Asymmetrical "Opt-In" Clusters
	attribute, Node Attributes, ACL Roles
		#digests-, Special node attributes
	#node-unfenced, Special node attributes
	acl_permission, ACL Roles
	fail-count-, Special node attributes
	last-failure-, Special node attributes
	maintenance, Special node attributes
	probe_complete, Special node attributes
	resource-discovery-enabled, Special node attributes
	shutdown, Special node attributes
	site-name, Special node attributes
	standby, Special node attributes
	terminate, Special node attributes

	attribute attribute, Node Attribute Expressions
		expression element, Node Attribute Expressions

	attribute_name, Writing an Alert Agent
	attribute_value, Writing an Alert Agent

B
	batch-limit, Cluster Options
		Cluster Option, Cluster Options

	boolean-op attribute, Rule Properties
		rule element, Rule Properties

	Bundle, Bundles - Isolated Environments
		Container, Bundle Container Properties
	Meta-attributes, Bundle Meta-Attributes
	Networking, Bundle Network Properties
	Node Attributes, Bundle Node Attributes
	Prerequisites, Bundle Prerequisites
	Primitive, Bundle Primitive
	Storage, Bundle Storage Properties

	bundle element, Bundle Properties
		description attribute, Bundle Properties
	id attribute, Bundle Properties

C
	call-id, Operation History
		Action Status, Operation History

	cib-last-written, CIB Properties
		Cluster Property, CIB Properties

	class, Resource Classes, Resource Properties
		Resource, Resource Properties

	class attribute, Resource Expressions
		rsc_expression element, Resource Expressions

	Clone
		Option
		clone-max, Clone Options
	clone-min, Clone Options
	clone-node-max, Clone Options
	globally-unique, Clone Options
	interleave, Clone Options
	notify, Clone Options
	ordered, Clone Options
	promotable, Clone Options
	promoted-max, Clone Options
	promoted-node-max, Clone Options

	Property
		id, Clone Properties

	Clone Option, Clone Options
	Clone Property, Clone Properties
	Clone Resources, Clones - Resources That Can Have Multiple Active Instances
	clone-max, Clone Options
		Clone Option, Clone Options

	clone-min, Clone Options
		Clone Option, Clone Options

	clone-node-max, Clone Options
		Clone Option, Clone Options

	Clones, Clones - Resources That Can Have Multiple Active Instances, Clone Stickiness
	Cluster, CIB Properties
		Option
		admin_epoch, CIB Properties
	batch-limit, Cluster Options
	cluster-delay, Cluster Options
	cluster-ipc-limit, Cluster Options
	cluster-recheck-interval, Cluster Options
	concurrent-fencing, Cluster Options
	Configuration Version, CIB Properties
	dc-deadtime, Cluster Options
	election-timeout, Cluster Options
	enable-acl, Cluster Options
	enable-startup-probes, Cluster Options
	epoch, CIB Properties
	fence-reaction, Cluster Options
	join-finalization-timeout, Cluster Options
	join-integration-timeout, Cluster Options
	maintenance-mode, Cluster Options
	migration-limit, Cluster Options
	no-quorum-policy, Cluster Options
	node-health-base, Cluster Options
	node-health-green, Cluster Options
	node-health-red, Cluster Options
	node-health-strategy, Cluster Options
	node-health-yellow, Cluster Options
	num_updates, CIB Properties
	pe-error-series-max, Cluster Options
	pe-input-series-max, Cluster Options
	pe-warn-series-max, Cluster Options
	placement-strategy, Cluster Options
	priority-fencing-delay, Cluster Options
	remove-after-stop, Cluster Options
	shutdown-escalation, Cluster Options
	shutdown-lock, Cluster Options
	shutdown-lock-limit, Cluster Options
	start-failure-is-fatal, Cluster Options
	startup-fencing, Cluster Options
	stonith-action, Cluster Options
	stonith-enabled, Cluster Options
	stonith-max-attempts, Cluster Options
	stonith-timeout, Cluster Options
	stonith-watchdog-timeout, Cluster Options
	stop-all-resources, Cluster Options
	stop-orphan-actions, Cluster Options
	stop-orphan-resources, Cluster Options
	symmetric-cluster, Cluster Options
	transition-delay, Cluster Options
	validate-with, CIB Properties

	Property
		cib-last-written, CIB Properties
	cluster-infrastructure, Cluster Options
	cluster-name, Cluster Options
	dc-uuid, CIB Properties
	dc-version, Cluster Options
	have-quorum, CIB Properties

	Setting Options with Rules, Using Rules to Control Cluster Options

	Cluster Option, CIB Properties, Cluster Options
	Cluster Property, CIB Properties, Cluster Options
	cluster-delay, Cluster Options
		Cluster Option, Cluster Options

	cluster-infrastructure, Cluster Options
		Cluster Property, Cluster Options

	cluster-ipc-limit, Cluster Options
		Cluster Option, Cluster Options

	cluster-name, Cluster Options
		Cluster Property, Cluster Options

	cluster-recheck-interval, Cluster Options
		Cluster Option, Cluster Options

	Colocation Constraint, Placing Resources Relative to other Resources
		rsc_colocation element, Colocation Properties

	concurrent-fencing, Cluster Options
		Cluster Option, Cluster Options

	Configuration, Fencing
	Configuration Version, CIB Properties
		Cluster, CIB Properties

	Constraint, Resource Constraints
		Colocation Constraint, Placing Resources Relative to other Resources
		rsc_colocation element, Colocation Properties

	Location Constraint, Deciding Which Nodes a Resource Can Run On
		Resource Discovery, Location Properties
	rsc_location element, Location Properties

	Ordering Constraint, Specifying the Order in which Resources Should Start/Stop
		rsc_order element, Ordering Properties

	Resource Set, Resource Sets
	Rule, Rules

	Constraints
		Ordering
		action, Using Promotable Clone Resources in Ordered Sets
	role, Using Promotable Clone Resources in Colocation Sets
	rsc-role, Promotable Clone Constraints
	with-rsc-role, Promotable Clone Constraints

	Container, Bundle Container Properties
		Docker
		Bundle, Bundles - Isolated Environments

	podman
		Bundle, Bundles - Isolated Environments

	rkt
		Bundle, Bundles - Isolated Environments

	control-port attribute, Bundle Network Properties
		network element, Bundle Network Properties

	Controlling Cluster Options, Using Rules to Control Cluster Options
	crm-debug-origin, Node Status, Operation History
		Action Status, Operation History
	Node Status, Node Status

	crmd, Node Status
		Node Status, Node Status

	CRM_alert_
		attribute_name, Writing an Alert Agent
	attribute_value, Writing an Alert Agent
	desc, Writing an Alert Agent
	exec_time, Writing an Alert Agent
	interval, Writing an Alert Agent
	kind, Writing an Alert Agent
	node, Writing an Alert Agent
	nodeid, Writing an Alert Agent
	rc, Writing an Alert Agent
	recipient, Writing an Alert Agent
	rsc, Writing an Alert Agent
	status, Writing an Alert Agent
	target_rc, Writing an Alert Agent
	task, Writing an Alert Agent
	timestamp, Writing an Alert Agent
	timestamp_epoch, Writing an Alert Agent
	timestamp_usec, Writing an Alert Agent
	version, Writing an Alert Agent

	CRM_alert_node_
		sequence, Writing an Alert Agent

	crm_feature_set, Operation History
		Action Status, Operation History

	custom, Node Health Strategy

D
	dampen, Tell Pacemaker to Monitor Connectivity
		Ping Resource Option, Tell Pacemaker to Monitor Connectivity

	Date Specification, Date Specifications
	Date/Time Expression, Date/Time Expressions
		Date Specification, Date Specifications
	Duration, Durations

	date_expression element, Date/Time Expressions
		end attribute, Date/Time Expressions
	id attribute, Date/Time Expressions
	operation attribute, Date/Time Expressions
	start attribute, Date/Time Expressions

	date_spec element, Date Specifications
		hours attribute, Date Specifications
	id attribute, Date Specifications
	monthdays attribute, Date Specifications
	months attribute, Date Specifications
	moon attribute, Date Specifications
	weekdays attribute, Date Specifications
	weeks attribute, Date Specifications
	weekyears attribute, Date Specifications
	yeardays attribute, Date Specifications
	years attribute, Date Specifications

	dc-deadtime, Cluster Options
		Cluster Option, Cluster Options

	dc-uuid, CIB Properties
		Cluster Property, CIB Properties

	dc-version, Cluster Options
		Cluster Property, Cluster Options

	demote_resource, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	demote_uname, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	desc, Writing an Alert Agent
	description, ACL Roles
		acl_permission, ACL Roles
	acl_role, ACL Roles

	description attribute, Bundle Properties
		bundle element, Bundle Properties

	Determine by Rules, Using Rules to Determine Resource Location
	Determine Resource Location, Using Rules to Determine Resource Location
	devices, Fencing Topologies
		fencing-level, Fencing Topologies

	Docker
		Bundle, Bundles - Isolated Environments

	docker element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	Duration, Durations
	duration element, Durations
		hours attribute, Durations
	id attribute, Durations
	minutes attribute, Durations
	months attribute, Durations
	seconds attribute, Durations
	weeks attribute, Durations
	years attribute, Durations

E
	election-timeout, Cluster Options
		Cluster Option, Cluster Options

	enable-acl, Cluster Options
		Cluster Option, Cluster Options

	enable-startup-probes, Cluster Options
		Cluster Option, Cluster Options

	enabled, Operation Properties
		Action Property, Operation Properties

	end attribute, Date/Time Expressions
		date_expression element, Date/Time Expressions

	Environment Variable
		CRM_alert_
		attribute_name, Writing an Alert Agent
	attribute_value, Writing an Alert Agent
	desc, Writing an Alert Agent
	exec_time, Writing an Alert Agent
	interval, Writing an Alert Agent
	kind, Writing an Alert Agent
	node, Writing an Alert Agent
	nodeid, Writing an Alert Agent
	rc, Writing an Alert Agent
	recipient, Writing an Alert Agent
	rsc, Writing an Alert Agent
	status, Writing an Alert Agent
	target_rc, Writing an Alert Agent
	task, Writing an Alert Agent
	timestamp, Writing an Alert Agent
	timestamp_epoch, Writing an Alert Agent
	timestamp_usec, Writing an Alert Agent
	version, Writing an Alert Agent

	CRM_alert_node_
		sequence, Writing an Alert Agent

	OCF_RESKEY_CRM_meta_notify_
		active_resource, Clone Notifications
	active_uname, Clone Notifications
	demote_resource, Extra Notifications for Promotable Clones
	demote_uname, Extra Notifications for Promotable Clones
	inactive_resource, Clone Notifications
	master_resource, Extra Notifications for Promotable Clones
	master_uname, Extra Notifications for Promotable Clones
	operation, Clone Notifications
	promote_resource, Extra Notifications for Promotable Clones
	promote_uname, Extra Notifications for Promotable Clones
	slave_resource, Extra Notifications for Promotable Clones
	slave_uname, Extra Notifications for Promotable Clones
	start_resource, Clone Notifications
	start_uname, Clone Notifications
	stop_resource, Clone Notifications
	stop_uname, Clone Notifications
	type, Clone Notifications

	epoch, CIB Properties
		Cluster Option, CIB Properties

	exec-time, Operation History
		Action Status, Operation History

	exec_time, Writing an Alert Agent
	expected, Node Status
		Node Status, Node Status

	expression element, Node Attribute Expressions
		attribute attribute, Node Attribute Expressions
	id attribute, Node Attribute Expressions
	operation attribute, Node Attribute Expressions
	type attribute, Node Attribute Expressions
	value attribute, Node Attribute Expressions
	value-source attribute, Node Attribute Expressions

F
	fail-count-, Special node attributes
		Node attribute, Special node attributes

	failure-timeout, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	feedback
		contact information for this manual, We Need Feedback!

	fence-reaction, Cluster Options
		Cluster Option, Cluster Options

	Fencing, Special Options for Fencing Resources
		Configuration, Fencing
	fencing-level
		devices, Fencing Topologies
	id, Fencing Topologies
	index, Fencing Topologies
	target, Fencing Topologies
	target-attribute, Fencing Topologies
	target-pattern, Fencing Topologies

	Property
		pcmk_action_limit, Special Options for Fencing Resources
	pcmk_delay_base, Special Options for Fencing Resources
	pcmk_delay_max, Special Options for Fencing Resources
	pcmk_host_argument, Special Options for Fencing Resources
	pcmk_host_check, Special Options for Fencing Resources
	pcmk_host_list, Special Options for Fencing Resources
	pcmk_host_map, Special Options for Fencing Resources
	pcmk_list_action, Special Options for Fencing Resources
	pcmk_list_retries, Special Options for Fencing Resources
	pcmk_list_timeout, Special Options for Fencing Resources
	pcmk_monitor_action, Special Options for Fencing Resources
	pcmk_monitor_retries, Special Options for Fencing Resources
	pcmk_monitor_timeout, Special Options for Fencing Resources
	pcmk_off_action, Special Options for Fencing Resources
	pcmk_off_retries, Special Options for Fencing Resources
	pcmk_off_timeout, Special Options for Fencing Resources
	pcmk_reboot_action, Special Options for Fencing Resources
	pcmk_reboot_retries, Special Options for Fencing Resources
	pcmk_reboot_timeout, Special Options for Fencing Resources
	pcmk_status_action, Special Options for Fencing Resources
	pcmk_status_retries, Special Options for Fencing Resources
	pcmk_status_timeout, Special Options for Fencing Resources
	provides, Special Options for Fencing Resources
	stonith-timeout, Special Options for Fencing Resources

	fencing-level, Fencing Topologies
		devices, Fencing Topologies
	id, Fencing Topologies
	index, Fencing Topologies
	target, Fencing Topologies
	target-attribute, Fencing Topologies
	target-pattern, Fencing Topologies

	first attribute, Ordering Properties
		rsc_order element, Ordering Properties

	first-action attribute, Ordering Properties
		rsc_order element, Ordering Properties

G
	globally-unique, Clone Options
		Clone Option, Clone Options

	green, Node Health Attributes
	Group Property
		id, Group Properties

	Group Resource Property, Group Properties
	Group Resources, Groups - A Syntactic Shortcut
	Groups, Groups - A Syntactic Shortcut, Group Stickiness

H
	have-quorum, CIB Properties
		Cluster Property, CIB Properties

	host-interface attribute, Bundle Network Properties
		network element, Bundle Network Properties

	host-netmask attribute, Bundle Network Properties
		network element, Bundle Network Properties

	host_list, Tell Pacemaker to Monitor Connectivity
		Ping Resource Option, Tell Pacemaker to Monitor Connectivity

	hours attribute, Date Specifications, Durations
		date_spec element, Date Specifications
	duration element, Durations

I
	id, Resource Properties, Operation Properties, Fencing Topologies, Group Properties, Clone Properties, ACL Roles, ACL Targets and Groups, Node Status, Operation History
		acl_group, ACL Targets and Groups
	acl_permission, ACL Roles
	acl_role, ACL Roles
	acl_target, ACL Targets and Groups
	Action Property, Operation Properties
	Action Status, Operation History
	Clone Property, Clone Properties
	fencing-level, Fencing Topologies
	Group Resource Property, Group Properties
	Node Status, Node Status
	Resource, Resource Properties
	role, ACL Targets and Groups

	id attribute, Location Properties, Ordering Properties, Colocation Properties, Resource Sets, Rule Properties, Node Attribute Expressions, Date/Time Expressions, Date Specifications, Durations, Resource Expressions, Operation Expressions, Bundle Properties, Bundle Network Properties, Bundle Storage Properties
		bundle element, Bundle Properties
	date_expression element, Date/Time Expressions
	date_spec element, Date Specifications
	duration element, Durations
	expression element, Node Attribute Expressions
	op_expression element, Operation Expressions
	port-mapping element, Bundle Network Properties
	resource_set element, Resource Sets
	rsc_colocation element, Colocation Properties
	rsc_expression element, Resource Expressions
	rsc_location element, Location Properties
	rsc_order element, Ordering Properties
	rule element, Rule Properties
	storage-mapping element, Bundle Storage Properties

	image attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	inactive_resource, Clone Notifications
		Notification Environment Variable, Clone Notifications

	index, Fencing Topologies
		fencing-level, Fencing Topologies

	interleave, Clone Options
		Clone Option, Clone Options

	internal-port attribute, Bundle Network Properties
		port-mapping element, Bundle Network Properties

	interval, Operation Properties, Writing an Alert Agent, Operation History
		Action Property, Operation Properties
	Action Status, Operation History

	interval attribute, Operation Expressions
		op_expression element, Operation Expressions

	in_ccm, Node Status
		Node Status, Node Status

	ip-range-start attribute, Bundle Network Properties
		network element, Bundle Network Properties

	is-managed, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

J
	join, Node Status
		Node Status, Node Status

	join-finalization-timeout, Cluster Options
		Cluster Option, Cluster Options

	join-integration-timeout, Cluster Options
		Cluster Option, Cluster Options

K
	kind, Writing an Alert Agent, ACL Roles
		acl_permission, ACL Roles

	kind attribute, Ordering Properties
		rsc_order element, Ordering Properties

L
	last-failure-, Special node attributes
		Node attribute, Special node attributes

	last-rc-change, Operation History
		Action Status, Operation History

	last-run, Operation History
		Action Status, Operation History

	Linux Standard Base
		Resources, Linux Standard Base

	Location
		Determine by Rules, Using Rules to Determine Resource Location

	Location Constraint, Deciding Which Nodes a Resource Can Run On
		Resource Discovery, Location Properties
	rsc_location element, Location Properties

	Location Relative to Other Resources, Placing Resources Relative to other Resources
	LSB, Linux Standard Base
		Resources, Linux Standard Base

M
	maintenance, Special node attributes, Resource Meta-Attributes
		Node attribute, Special node attributes
	Resource Option, Resource Meta-Attributes

	maintenance-mode, Cluster Options
		Cluster Option, Cluster Options

	master_resource, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	master_uname, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	Meta-attributes, Bundle Meta-Attributes
	migrate-on-red, Node Health Strategy
	migration-limit, Cluster Options
		Cluster Option, Cluster Options

	migration-threshold, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	minutes attribute, Durations
		duration element, Durations

	monthdays attribute, Date Specifications
		date_spec element, Date Specifications

	months attribute, Date Specifications, Durations
		date_spec element, Date Specifications
	duration element, Durations

	moon attribute, Date Specifications
		date_spec element, Date Specifications

	Moving, Moving Resources
		Resources, Moving Resources

	multiple-active, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	multiplier, Tell Pacemaker to Monitor Connectivity
		Ping Resource Option, Tell Pacemaker to Monitor Connectivity

N
	Nagios Plugins, Nagios Plugins
		Resources, Nagios Plugins

	name, Operation Properties
		Action Property, Operation Properties

	name attribute, Operation Expressions
		op_expression element, Operation Expressions

	network attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	network element, Bundle Network Properties
		add-host attribute, Bundle Network Properties
	control-port attribute, Bundle Network Properties
	host-interface attribute, Bundle Network Properties
	host-netmask attribute, Bundle Network Properties
	ip-range-start attribute, Bundle Network Properties

	Networking, Bundle Network Properties
	no-quorum-policy, Cluster Options
		Cluster Option, Cluster Options

	Node
		attribute, Node Attributes
		#digests-, Special node attributes
	#node-unfenced, Special node attributes
	fail-count-, Special node attributes
	last-failure-, Special node attributes
	maintenance, Special node attributes
	probe_complete, Special node attributes
	resource-discovery-enabled, Special node attributes
	shutdown, Special node attributes
	site-name, Special node attributes
	standby, Special node attributes
	terminate, Special node attributes

	Score, Scores
	Status, Node Status
		crm-debug-origin, Node Status
	crmd, Node Status
	expected, Node Status
	id, Node Status
	in_ccm, Node Status
	join, Node Status
	uname, Node Status

	node, Writing an Alert Agent
	Node attribute, Special node attributes
	node attribute, Location Properties
		rsc_location element, Location Properties

	Node Attribute Expression, Node Attribute Expressions
	Node Attributes, Bundle Node Attributes
	Node health
		custom, Node Health Strategy
	green, Node Health Attributes
	migrate-on-red, Node Health Strategy
	none, Node Health Strategy
	only-green, Node Health Strategy
	progressive, Node Health Strategy
	red, Node Health Attributes
	score, Node Health Attributes
	yellow, Node Health Attributes

	Node Status, Node Status
	node-attribute attribute, Colocation Properties
		rsc_colocation element, Colocation Properties

	node-health-base, Cluster Options
		Cluster Option, Cluster Options

	node-health-green, Cluster Options
		Cluster Option, Cluster Options

	node-health-red, Cluster Options
		Cluster Option, Cluster Options

	node-health-strategy, Cluster Options
		Cluster Option, Cluster Options

	node-health-yellow, Cluster Options
		Cluster Option, Cluster Options

	nodeid, Writing an Alert Agent
	none, Node Health Strategy
	Notification Environment Variable, Clone Notifications, Extra Notifications for Promotable Clones
	notify, Clone Options
		Clone Option, Clone Options

	num_updates, CIB Properties
		Cluster Option, CIB Properties

O
	object-type, ACL Roles
		acl_permission, ACL Roles

	OCF, Open Cluster Framework
		Resources, Open Cluster Framework

	OCF_FAILED_MASTER, Resource Agent Requirements for Promotable Clones
	OCF_NOT_RUNNING, Resource Agent Requirements for Promotable Clones
	OCF_RESKEY_CRM_meta_notify_
		active_resource, Clone Notifications
	active_uname, Clone Notifications
	demote_resource, Extra Notifications for Promotable Clones
	demote_uname, Extra Notifications for Promotable Clones
	inactive_resource, Clone Notifications
	master_resource, Extra Notifications for Promotable Clones
	master_uname, Extra Notifications for Promotable Clones
	operation, Clone Notifications
	promote_resource, Extra Notifications for Promotable Clones
	promote_uname, Extra Notifications for Promotable Clones
	slave_resource, Extra Notifications for Promotable Clones
	slave_uname, Extra Notifications for Promotable Clones
	start_resource, Clone Notifications
	start_uname, Clone Notifications
	stop_resource, Clone Notifications
	stop_uname, Clone Notifications
	type, Clone Notifications

	OCF_RUNNING_MASTER, Resource Agent Requirements for Promotable Clones
	OCF_SUCCESS, Resource Agent Requirements for Promotable Clones
	on-fail, Operation Properties
		Action Property, Operation Properties

	only-green, Node Health Strategy
	op-digest, Operation History
		Action Status, Operation History

	op-status, Operation History
		Action Status, Operation History

	Open Cluster Framework
		Resources, Open Cluster Framework

	operation, Clone Notifications, Operation History
		Action Status, Operation History
	Notification Environment Variable, Clone Notifications

	operation attribute, Node Attribute Expressions, Date/Time Expressions
		date_expression element, Date/Time Expressions
	expression element, Node Attribute Expressions

	Operation History, Operation History
	Opt-In Clusters, Asymmetrical "Opt-In" Clusters
	Opt-Out Clusters, Symmetrical "Opt-Out" Clusters
	Option
		admin_epoch, CIB Properties
	batch-limit, Cluster Options
	clone-max, Clone Options
	clone-min, Clone Options
	clone-node-max, Clone Options
	cluster-delay, Cluster Options
	cluster-ipc-limit, Cluster Options
	cluster-recheck-interval, Cluster Options
	concurrent-fencing, Cluster Options
	Configuration Version, CIB Properties
	dampen, Tell Pacemaker to Monitor Connectivity
	dc-deadtime, Cluster Options
	election-timeout, Cluster Options
	enable-acl, Cluster Options
	enable-startup-probes, Cluster Options
	epoch, CIB Properties
	failure-timeout, Resource Meta-Attributes
	fence-reaction, Cluster Options
	globally-unique, Clone Options
	host_list, Tell Pacemaker to Monitor Connectivity
	interleave, Clone Options
	is-managed, Resource Meta-Attributes
	join-finalization-timeout, Cluster Options
	join-integration-timeout, Cluster Options
	maintenance, Resource Meta-Attributes
	maintenance-mode, Cluster Options
	migration-limit, Cluster Options
	migration-threshold, Resource Meta-Attributes
	multiple-active, Resource Meta-Attributes
	multiplier, Tell Pacemaker to Monitor Connectivity
	no-quorum-policy, Cluster Options
	node-health-base, Cluster Options
	node-health-green, Cluster Options
	node-health-red, Cluster Options
	node-health-strategy, Cluster Options
	node-health-yellow, Cluster Options
	notify, Clone Options
	num_updates, CIB Properties
	ordered, Clone Options
	pe-error-series-max, Cluster Options
	pe-input-series-max, Cluster Options
	pe-warn-series-max, Cluster Options
	placement-strategy, Cluster Options
	priority, Resource Meta-Attributes
	priority-fencing-delay, Cluster Options
	promotable, Clone Options
	promoted-max, Clone Options
	promoted-node-max, Clone Options
	remove-after-stop, Cluster Options
	requires, Resource Meta-Attributes
	resource-stickiness, Resource Meta-Attributes
	shutdown-escalation, Cluster Options
	shutdown-lock, Cluster Options
	shutdown-lock-limit, Cluster Options
	start-failure-is-fatal, Cluster Options
	startup-fencing, Cluster Options
	stonith-action, Cluster Options
	stonith-enabled, Cluster Options
	stonith-max-attempts, Cluster Options
	stonith-timeout, Cluster Options
	stonith-watchdog-timeout, Cluster Options
	stop-all-resources, Cluster Options
	stop-orphan-actions, Cluster Options
	stop-orphan-resources, Cluster Options
	symmetric-cluster, Cluster Options
	target-role, Resource Meta-Attributes
	timeout, Alert Meta-Attributes
	timestamp-format, Alert Meta-Attributes
	transition-delay, Cluster Options
	validate-with, CIB Properties

	options attribute, Bundle Container Properties, Bundle Storage Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties
	storage-mapping element, Bundle Storage Properties

	op_expression element, Operation Expressions
		id attribute, Operation Expressions
	interval attribute, Operation Expressions
	name attribute, Operation Expressions

	ordered, Clone Options
		Clone Option, Clone Options

	Ordering
		action, Using Promotable Clone Resources in Ordered Sets
	role, Using Promotable Clone Resources in Colocation Sets
	rsc-role, Promotable Clone Constraints
	with-rsc-role, Promotable Clone Constraints

	Ordering Constraint, Specifying the Order in which Resources Should Start/Stop
		rsc_order element, Ordering Properties

	Ordering Constraints, Promotable Clone Constraints, Using Promotable Clone Resources in Colocation Sets, Using Promotable Clone Resources in Ordered Sets

P
	pcmk_action_limit, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_delay_base, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_delay_max, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_host_argument, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_host_check, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_host_list, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_host_map, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_list_action, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_list_retries, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_list_timeout, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_monitor_action, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_monitor_retries, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_monitor_timeout, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_off_action, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_off_retries, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_off_timeout, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_reboot_action, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_reboot_retries, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_reboot_timeout, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_status_action, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_status_retries, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pcmk_status_timeout, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

	pe-error-series-max, Cluster Options
		Cluster Option, Cluster Options

	pe-input-series-max, Cluster Options
		Cluster Option, Cluster Options

	pe-warn-series-max, Cluster Options
		Cluster Option, Cluster Options

	Ping Resource
		Option
		dampen, Tell Pacemaker to Monitor Connectivity
	host_list, Tell Pacemaker to Monitor Connectivity
	multiplier, Tell Pacemaker to Monitor Connectivity

	Ping Resource Option, Tell Pacemaker to Monitor Connectivity
	placement-strategy, Cluster Options
		Cluster Option, Cluster Options

	podman
		Bundle, Bundles - Isolated Environments

	podman element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	port attribute, Bundle Network Properties
		port-mapping element, Bundle Network Properties

	port-mapping, Bundle Network Properties
	port-mapping element, Bundle Network Properties
		id attribute, Bundle Network Properties
	internal-port attribute, Bundle Network Properties
	port attribute, Bundle Network Properties
	range attribute, Bundle Network Properties

	Prerequisites, Bundle Prerequisites
	Primitive, Bundle Primitive
	priority, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	priority-fencing-delay, Cluster Options
		Cluster Option, Cluster Options

	probe_complete, Special node attributes
		Node attribute, Special node attributes

	progressive, Node Health Strategy
	Promotable, Promotable clones
	promotable, Clone Options
		Clone Option, Clone Options

	Promotable Clone Resources, Promotable clones
	promoted-max, Clone Options
		Clone Option, Clone Options

	promoted-max attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	promoted-node-max, Clone Options
		Clone Option, Clone Options

	promote_resource, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	promote_uname, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	Property
		cib-last-written, CIB Properties
	class, Resource Properties
	cluster-infrastructure, Cluster Options
	cluster-name, Cluster Options
	dc-uuid, CIB Properties
	dc-version, Cluster Options
	enabled, Operation Properties
	have-quorum, CIB Properties
	id, Resource Properties, Operation Properties, Clone Properties
	interval, Operation Properties
	name, Operation Properties
	on-fail, Operation Properties
	pcmk_action_limit, Special Options for Fencing Resources
	pcmk_delay_base, Special Options for Fencing Resources
	pcmk_delay_max, Special Options for Fencing Resources
	pcmk_host_argument, Special Options for Fencing Resources
	pcmk_host_check, Special Options for Fencing Resources
	pcmk_host_list, Special Options for Fencing Resources
	pcmk_host_map, Special Options for Fencing Resources
	pcmk_list_action, Special Options for Fencing Resources
	pcmk_list_retries, Special Options for Fencing Resources
	pcmk_list_timeout, Special Options for Fencing Resources
	pcmk_monitor_action, Special Options for Fencing Resources
	pcmk_monitor_retries, Special Options for Fencing Resources
	pcmk_monitor_timeout, Special Options for Fencing Resources
	pcmk_off_action, Special Options for Fencing Resources
	pcmk_off_retries, Special Options for Fencing Resources
	pcmk_off_timeout, Special Options for Fencing Resources
	pcmk_reboot_action, Special Options for Fencing Resources
	pcmk_reboot_retries, Special Options for Fencing Resources
	pcmk_reboot_timeout, Special Options for Fencing Resources
	pcmk_status_action, Special Options for Fencing Resources
	pcmk_status_retries, Special Options for Fencing Resources
	pcmk_status_timeout, Special Options for Fencing Resources
	provider, Resource Properties
	provides, Special Options for Fencing Resources
	role, Operation Properties
	stonith-timeout, Special Options for Fencing Resources
	timeout, Operation Properties
	type, Resource Properties

	provider, Resource Properties
		Resource, Resource Properties

	provider attribute, Resource Expressions
		rsc_expression element, Resource Expressions

	provides, Special Options for Fencing Resources
		Fencing, Special Options for Fencing Resources

Q
	queue-time, Operation History
		Action Status, Operation History

R
	range attribute, Bundle Network Properties
		port-mapping element, Bundle Network Properties

	rc, Writing an Alert Agent
	rc-code, Operation History
		Action Status, Operation History

	recipient, Writing an Alert Agent
	red, Node Health Attributes
	reference, ACL Roles
		acl_permission, ACL Roles

	remove-after-stop, Cluster Options
		Cluster Option, Cluster Options

	replicas attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	replicas-per-host attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	require-all attribute, Resource Sets
		resource_set element, Resource Sets

	requires, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	Resource, What is a Cluster Resource?, Resource Properties
		Action, Resource Operations
	Alerts, Alerts
	Bundle, Bundles - Isolated Environments
		Container, Bundle Container Properties
	Meta-attributes, Bundle Meta-Attributes
	Networking, Bundle Network Properties
	Node Attributes, Bundle Node Attributes
	Prerequisites, Bundle Prerequisites
	Primitive, Bundle Primitive
	Storage, Bundle Storage Properties

	class, Resource Classes
	Clones, Clones - Resources That Can Have Multiple Active Instances
	Constraint, Resource Constraints
	Group Property
		id, Group Properties

	Groups, Groups - A Syntactic Shortcut
	Location
		Determine by Rules, Using Rules to Determine Resource Location

	Location Relative to Other Resources, Placing Resources Relative to other Resources
	LSB, Linux Standard Base
	Moving, Moving Resources
	Nagios Plugins, Nagios Plugins
	OCF, Open Cluster Framework
	Option
		failure-timeout, Resource Meta-Attributes
	is-managed, Resource Meta-Attributes
	maintenance, Resource Meta-Attributes
	migration-threshold, Resource Meta-Attributes
	multiple-active, Resource Meta-Attributes
	priority, Resource Meta-Attributes
	requires, Resource Meta-Attributes
	resource-stickiness, Resource Meta-Attributes
	target-role, Resource Meta-Attributes

	Promotable, Promotable clones
	Property
		class, Resource Properties
	id, Resource Properties
	provider, Resource Properties
	type, Resource Properties

	Resource Set, Resource Sets
	Score, Scores
	Start Order, Specifying the Order in which Resources Should Start/Stop
	STONITH, STONITH
	System Services, System Services
	Systemd, Systemd
	Upstart, Upstart

	Resource Discovery, Location Properties
	Resource Option, Resource Meta-Attributes
	Resource Set, Resource Sets
	resource-discovery attribute, Location Properties
		rsc_location element, Location Properties

	resource-discovery-enabled, Special node attributes
		Node attribute, Special node attributes

	resource-stickiness, Resource Meta-Attributes
		Clones, Clone Stickiness
	Groups, Group Stickiness
	Resource Option, Resource Meta-Attributes

	Resources, Open Cluster Framework, Linux Standard Base, Systemd, Upstart, System Services, STONITH, Nagios Plugins, Moving Resources
	resource_set element, Resource Sets
		action attribute, Resource Sets
	id attribute, Resource Sets
	require-all attribute, Resource Sets
	role attribute, Resource Sets
	score attribute, Resource Sets
	sequential attribute, Resource Sets

	Return Code
		OCF_FAILED_MASTER, Resource Agent Requirements for Promotable Clones
	OCF_NOT_RUNNING, Resource Agent Requirements for Promotable Clones
	OCF_RUNNING_MASTER, Resource Agent Requirements for Promotable Clones
	OCF_SUCCESS, Resource Agent Requirements for Promotable Clones

	rkt
		Bundle, Bundles - Isolated Environments

	rkt element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	role, Operation Properties, Using Promotable Clone Resources in Colocation Sets, ACL Targets and Groups
		Action Property, Operation Properties
	id, ACL Targets and Groups
	Ordering Constraints, Using Promotable Clone Resources in Colocation Sets

	role attribute, Resource Sets, Rule Properties
		resource_set element, Resource Sets
	rule element, Rule Properties

	rsc, Writing an Alert Agent
	rsc attribute, Location Properties, Colocation Properties
		rsc_colocation element, Colocation Properties
	rsc_location element, Location Properties

	rsc-pattern attribute, Location Properties
		rsc_location element, Location Properties

	rsc-role, Promotable Clone Constraints
		Ordering Constraints, Promotable Clone Constraints

	rsc_colocation element, Colocation Properties
		id attribute, Colocation Properties
	node-attribute attribute, Colocation Properties
	rsc attribute, Colocation Properties
	score attribute, Colocation Properties
	with-rsc attribute, Colocation Properties

	rsc_expression element, Resource Expressions
		class attribute, Resource Expressions
	id attribute, Resource Expressions
	provider attribute, Resource Expressions
	type attribute, Resource Expressions

	rsc_location element, Location Properties
		id attribute, Location Properties
	node attribute, Location Properties
	resource-discovery attribute, Location Properties
	rsc attribute, Location Properties
	rsc-pattern attribute, Location Properties
	score attribute, Location Properties

	rsc_order element, Ordering Properties
		first attribute, Ordering Properties
	first-action attribute, Ordering Properties
	id attribute, Ordering Properties
	kind attribute, Ordering Properties
	symmetrical attribute, Ordering Properties
	then attribute, Ordering Properties
	then-action attribute, Ordering Properties

	Rule, Rules
		Controlling Cluster Options, Using Rules to Control Cluster Options
	Date/Time Expression, Date/Time Expressions
		Date Specification, Date Specifications
	Duration, Durations

	Determine Resource Location, Using Rules to Determine Resource Location
	Node Attribute Expression, Node Attribute Expressions

	rule element, Rule Properties
		boolean-op attribute, Rule Properties
	id attribute, Rule Properties
	role attribute, Rule Properties
	score attribute, Rule Properties
	score-attribute attribute, Rule Properties

	run-command attribute, Bundle Container Properties
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

S
	Score, Scores
	score, Node Health Attributes
	score attribute, Location Properties, Colocation Properties, Resource Sets, Rule Properties
		resource_set element, Resource Sets
	rsc_colocation element, Colocation Properties
	rsc_location element, Location Properties
	rule element, Rule Properties

	score-attribute attribute, Rule Properties
		rule element, Rule Properties

	seconds attribute, Durations
		duration element, Durations

	sequence, Writing an Alert Agent
	sequential attribute, Resource Sets
		resource_set element, Resource Sets

	Setting Options with Rules, Using Rules to Control Cluster Options
	shutdown, Special node attributes
		Node attribute, Special node attributes

	shutdown-escalation, Cluster Options
		Cluster Option, Cluster Options

	shutdown-lock, Cluster Options
		Cluster Option, Cluster Options

	shutdown-lock-limit, Cluster Options
		Cluster Option, Cluster Options

	site-name, Special node attributes
		Node attribute, Special node attributes

	slave_resource, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	slave_uname, Extra Notifications for Promotable Clones
		Notification Environment Variable, Extra Notifications for Promotable Clones

	source-dir attribute, Bundle Storage Properties
		storage-mapping element, Bundle Storage Properties

	source-dir-root attribute, Bundle Storage Properties
		storage-mapping element, Bundle Storage Properties

	standby, Special node attributes
		Node attribute, Special node attributes

	start attribute, Date/Time Expressions
		date_expression element, Date/Time Expressions

	Start Order, Specifying the Order in which Resources Should Start/Stop
	start-failure-is-fatal, Cluster Options
		Cluster Option, Cluster Options

	startup-fencing, Cluster Options
		Cluster Option, Cluster Options

	start_resource, Clone Notifications
		Notification Environment Variable, Clone Notifications

	start_uname, Clone Notifications
		Notification Environment Variable, Clone Notifications

	status, Writing an Alert Agent
	Status, Node Status
		call-id, Operation History
	crm-debug-origin, Node Status, Operation History
	crmd, Node Status
	crm_feature_set, Operation History
	exec-time, Operation History
	expected, Node Status
	id, Node Status, Operation History
	interval, Operation History
	in_ccm, Node Status
	join, Node Status
	last-rc-change, Operation History
	last-run, Operation History
	op-digest, Operation History
	op-status, Operation History
	operation, Operation History
	queue-time, Operation History
	rc-code, Operation History
	transition-key, Operation History
	transition-magic, Operation History
	uname, Node Status

	Status of a Node, Node Status
	STONITH, STONITH
		Configuration, Fencing
	Resources, STONITH

	stonith-action, Cluster Options
		Cluster Option, Cluster Options

	stonith-enabled, Cluster Options
		Cluster Option, Cluster Options

	stonith-max-attempts, Cluster Options
		Cluster Option, Cluster Options

	stonith-timeout, Cluster Options, Special Options for Fencing Resources
		Cluster Option, Cluster Options
	Fencing, Special Options for Fencing Resources

	stonith-watchdog-timeout, Cluster Options
		Cluster Option, Cluster Options

	stop-all-resources, Cluster Options
		Cluster Option, Cluster Options

	stop-orphan-actions, Cluster Options
		Cluster Option, Cluster Options

	stop-orphan-resources, Cluster Options
		Cluster Option, Cluster Options

	stop_resource, Clone Notifications
		Notification Environment Variable, Clone Notifications

	stop_uname, Clone Notifications
		Notification Environment Variable, Clone Notifications

	Storage, Bundle Storage Properties
	storage element, Bundle Storage Properties
	storage-mapping element, Bundle Storage Properties
		id attribute, Bundle Storage Properties
	options attribute, Bundle Storage Properties
	source-dir attribute, Bundle Storage Properties
	source-dir-root attribute, Bundle Storage Properties
	target-dir attribute, Bundle Storage Properties

	symmetric-cluster, Cluster Options
		Cluster Option, Cluster Options

	symmetrical attribute, Ordering Properties
		rsc_order element, Ordering Properties

	Symmetrical Clusters, Symmetrical "Opt-Out" Clusters
	System Service
		Resources, System Services

	System Services, System Services
	Systemd, Systemd
		Resources, Systemd

T
	target, Fencing Topologies
		fencing-level, Fencing Topologies

	target-attribute, Fencing Topologies
		fencing-level, Fencing Topologies

	target-dir attribute, Bundle Storage Properties
		storage-mapping element, Bundle Storage Properties

	target-pattern, Fencing Topologies
		fencing-level, Fencing Topologies

	target-role, Resource Meta-Attributes
		Resource Option, Resource Meta-Attributes

	target_rc, Writing an Alert Agent
	task, Writing an Alert Agent
	terminate, Special node attributes
		Node attribute, Special node attributes

	then attribute, Ordering Properties
		rsc_order element, Ordering Properties

	then-action attribute, Ordering Properties
		rsc_order element, Ordering Properties

	timeout, Operation Properties, Alert Meta-Attributes
		Action Property, Operation Properties

	timestamp, Writing an Alert Agent
	timestamp-format, Alert Meta-Attributes
	timestamp_epoch, Writing an Alert Agent
	timestamp_usec, Writing an Alert Agent
	transition-delay, Cluster Options
		Cluster Option, Cluster Options

	transition-key, Operation History
		Action Status, Operation History

	transition-magic, Operation History
		Action Status, Operation History

	type, Resource Properties, Clone Notifications
		Notification Environment Variable, Clone Notifications
	Resource, Resource Properties

	type attribute, Node Attribute Expressions, Resource Expressions
		expression element, Node Attribute Expressions
	rsc_expression element, Resource Expressions

U
	uname, Node Status
		Node Status, Node Status

	Upstart, Upstart
		Resources, Upstart

V
	validate-with, CIB Properties
		Cluster Option, CIB Properties

	value attribute, Node Attribute Expressions
		expression element, Node Attribute Expressions

	value-source attribute, Node Attribute Expressions
		expression element, Node Attribute Expressions

	version, Writing an Alert Agent

W
	weekdays attribute, Date Specifications
		date_spec element, Date Specifications

	weeks attribute, Date Specifications, Durations
		date_spec element, Date Specifications
	duration element, Durations

	weekyears attribute, Date Specifications
		date_spec element, Date Specifications

	with-rsc attribute, Colocation Properties
		rsc_colocation element, Colocation Properties

	with-rsc-role, Promotable Clone Constraints
		Ordering Constraints, Promotable Clone Constraints

X
	XML attribute
		action attribute
		resource_set element, Resource Sets

	attribute attribute
		expression element, Node Attribute Expressions

	boolean-op attribute
		rule element, Rule Properties

	class attribute
		rsc_expression element, Resource Expressions

	description attribute
		bundle element, Bundle Properties

	end attribute
		date_expression element, Date/Time Expressions

	first attribute
		rsc_order element, Ordering Properties

	first-action attribute
		rsc_order element, Ordering Properties

	hours attribute
		date_spec element, Date Specifications
	duration element, Durations

	id attribute
		bundle element, Bundle Properties
	date_expression element, Date/Time Expressions
	date_spec element, Date Specifications
	duration element, Durations
	expression element, Node Attribute Expressions
	op_expression element, Operation Expressions
	port-mapping element, Bundle Network Properties
	resource_set element, Resource Sets
	rsc_colocation element, Colocation Properties
	rsc_expression element, Resource Expressions
	rsc_location element, Location Properties
	rsc_order element, Ordering Properties
	rule element, Rule Properties
	storage-mapping element, Bundle Storage Properties

	image attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	internal-port attribute
		port-mapping element, Bundle Network Properties

	interval attribute
		op_expression element, Operation Expressions

	kind attribute
		rsc_order element, Ordering Properties

	minutes attribute
		duration element, Durations

	monthdays attribute
		date_spec element, Date Specifications

	months attribute
		date_spec element, Date Specifications
	duration element, Durations

	moon attribute
		date_spec element, Date Specifications

	name attribute
		op_expression element, Operation Expressions

	network attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	network element
		add-host attribute, Bundle Network Properties
	control-port attribute, Bundle Network Properties
	host-interface attribute, Bundle Network Properties
	host-netmask attribute, Bundle Network Properties
	ip-range-start attribute, Bundle Network Properties

	node attribute
		rsc_location element, Location Properties

	node-attribute attribute
		rsc_colocation element, Colocation Properties

	operation attribute
		date_expression element, Date/Time Expressions
	expression element, Node Attribute Expressions

	options attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties
	storage-mapping element, Bundle Storage Properties

	port attribute
		port-mapping element, Bundle Network Properties

	promoted-max attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	provider attribute
		rsc_expression element, Resource Expressions

	range attribute
		port-mapping element, Bundle Network Properties

	replicas attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	replicas-per-host attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	require-all attribute
		resource_set element, Resource Sets

	resource-discovery attribute
		rsc_location element, Location Properties

	role attribute
		resource_set element, Resource Sets
	rule element, Rule Properties

	rsc attribute
		rsc_colocation element, Colocation Properties
	rsc_location element, Location Properties

	rsc-pattern attribute
		rsc_location element, Location Properties

	run-command attribute
		docker element, Bundle Container Properties
	podman element, Bundle Container Properties
	rkt element, Bundle Container Properties

	score attribute
		resource_set element, Resource Sets
	rsc_colocation element, Colocation Properties
	rsc_location element, Location Properties
	rule element, Rule Properties

	score-attribute attribute
		rule element, Rule Properties

	seconds attribute
		duration element, Durations

	sequential attribute
		resource_set element, Resource Sets

	source-dir attribute
		storage-mapping element, Bundle Storage Properties

	source-dir-root attribute
		storage-mapping element, Bundle Storage Properties

	start attribute
		date_expression element, Date/Time Expressions

	symmetrical attribute
		rsc_order element, Ordering Properties

	target-dir attribute
		storage-mapping element, Bundle Storage Properties

	then attribute
		rsc_order element, Ordering Properties

	then-action attribute
		rsc_order element, Ordering Properties

	type attribute
		expression element, Node Attribute Expressions
	rsc_expression element, Resource Expressions

	value attribute
		expression element, Node Attribute Expressions

	value-source attribute
		expression element, Node Attribute Expressions

	weekdays attribute
		date_spec element, Date Specifications

	weeks attribute
		date_spec element, Date Specifications
	duration element, Durations

	weekyears attribute
		date_spec element, Date Specifications

	with-rsc attribute
		rsc_colocation element, Colocation Properties

	yeardays attribute
		date_spec element, Date Specifications

	years attribute
		date_spec element, Date Specifications
	duration element, Durations

	XML element
		add-host attribute
		network element, Bundle Network Properties

	bundle element, Bundle Properties
		description attribute, Bundle Properties
	id attribute, Bundle Properties

	control-port attribute
		network element, Bundle Network Properties

	date_expression element, Date/Time Expressions
		end attribute, Date/Time Expressions
	id attribute, Date/Time Expressions
	operation attribute, Date/Time Expressions
	start attribute, Date/Time Expressions

	date_spec element, Date Specifications
		hours attribute, Date Specifications
	id attribute, Date Specifications
	monthdays attribute, Date Specifications
	months attribute, Date Specifications
	moon attribute, Date Specifications
	weekdays attribute, Date Specifications
	weeks attribute, Date Specifications
	weekyears attribute, Date Specifications
	yeardays attribute, Date Specifications
	years attribute, Date Specifications

	docker element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	duration element, Durations
		hours attribute, Durations
	id attribute, Durations
	minutes attribute, Durations
	months attribute, Durations
	seconds attribute, Durations
	weeks attribute, Durations
	years attribute, Durations

	expression element, Node Attribute Expressions
		attribute attribute, Node Attribute Expressions
	id attribute, Node Attribute Expressions
	operation attribute, Node Attribute Expressions
	type attribute, Node Attribute Expressions
	value attribute, Node Attribute Expressions
	value-source attribute, Node Attribute Expressions

	host-interface attribute
		network element, Bundle Network Properties

	host-netmask attribute
		network element, Bundle Network Properties

	ip-range-start attribute
		network element, Bundle Network Properties

	network element, Bundle Network Properties
	op_expression element
		id attribute, Operation Expressions
	interval attribute, Operation Expressions
	name attribute, Operation Expressions

	podman element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	port-mapping, Bundle Network Properties
	port-mapping element
		id attribute, Bundle Network Properties
	internal-port attribute, Bundle Network Properties
	port attribute, Bundle Network Properties
	range attribute, Bundle Network Properties

	resource_set element
		action attribute, Resource Sets
	id attribute, Resource Sets
	require-all attribute, Resource Sets
	role attribute, Resource Sets
	score attribute, Resource Sets
	sequential attribute, Resource Sets

	rkt element, Bundle Container Properties
		image attribute, Bundle Container Properties
	network attribute, Bundle Container Properties
	options attribute, Bundle Container Properties
	promoted-max attribute, Bundle Container Properties
	replicas attribute, Bundle Container Properties
	replicas-per-host attribute, Bundle Container Properties
	run-command attribute, Bundle Container Properties

	rsc_colocation element, Colocation Properties
		id attribute, Colocation Properties
	node-attribute attribute, Colocation Properties
	rsc attribute, Colocation Properties
	score attribute, Colocation Properties
	with-rsc attribute, Colocation Properties

	rsc_expression element
		class attribute, Resource Expressions
	id attribute, Resource Expressions
	provider attribute, Resource Expressions
	type attribute, Resource Expressions

	rsc_location element, Location Properties
		id attribute, Location Properties
	node attribute, Location Properties
	resource-discovery attribute, Location Properties
	rsc attribute, Location Properties
	rsc-pattern attribute, Location Properties
	score attribute, Location Properties

	rsc_order element, Ordering Properties
		first attribute, Ordering Properties
	first-action attribute, Ordering Properties
	id attribute, Ordering Properties
	kind attribute, Ordering Properties
	symmetrical attribute, Ordering Properties
	then attribute, Ordering Properties
	then-action attribute, Ordering Properties

	rule element, Rule Properties
		boolean-op attribute, Rule Properties
	id attribute, Rule Properties
	role attribute, Rule Properties
	score attribute, Rule Properties
	score-attribute attribute, Rule Properties

	storage element, Bundle Storage Properties
	storage-mapping element, Bundle Storage Properties
		id attribute, Bundle Storage Properties
	options attribute, Bundle Storage Properties
	source-dir attribute, Bundle Storage Properties
	source-dir-root attribute, Bundle Storage Properties
	target-dir attribute, Bundle Storage Properties

	xpath, ACL Roles
		acl_permission, ACL Roles

Y
	yeardays attribute, Date Specifications
		date_spec element, Date Specifications

	years attribute, Date Specifications, Durations
		date_spec element, Date Specifications
	duration element, Durations

	yellow, Node Health Attributes

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/images/three-sets.png

OEBPS/images/Partitioning.png
File View Sendkey Help

MANUAL PARTITIONING CEN 7 INSTALLATION
~ New CentOS 7 Installation centos_pcmk-1-swap
/boot 1024 MiB
/ il esir apacity:
(e EUAND | e Virtio Block Device (vda)

_ —

Device Type: Volume Group.
LM v | Oknaypt | centos_pemk-1
File System: oty
wp | [(AReformat
Label: -
swap

Note: The settings you make on this screen will not
be applied until yeu click on the main menu's ‘Begin
Installation button.

1 storage device selected Reset All

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 2.0_idm46061148260416 Configuration Explained The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To achieve this, it will focus exclusively on the XML syntax used to configure Pacemaker's Cluster Information Base (CIB). en

OEBPS/images/Policy-Engine-small-small.png
oo openis > tmonivr 0penica > s woir 02

OEBPS/Common_Content/images/shine.png

OEBPS/images/Installer.png
File View Sendkey Help

INSTALLATION SUMMARY CENTOS 7 INSTALLATION
B Help!
LOCALIZATION
DATE & TIME KEYBOARD
Americas/New York timezone English (US)

LANGUAGE SUPPORT
English (United States)

SOFTWARE
INSTALLATION SOURCE SOFTWARE SELECTION
Local media Minimal Install
SYSTEM
INSTALLATION DESTINATION KDUMP
Automatic partitioning selected Kdump is enabled

NETWORK & HOST NAME a SECURITY POLICY

6 Not connected No profile selected

A Please complete items marked with this icon before continuing to the next step.

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/pacemaker-logo.png

OEBPS/Common_Content/images/image_right.png
clusterlabs

documentation

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/red.png

OEBPS/images/Policy-Engine-big-small.png

OEBPS/Common_Content/images/28.png

OEBPS/images/pcmk-internals.png
pacemakerd (launches and monitors all other daemons)

pacemaker-execd pacemaker-schedulerd
(executes resource agents) (determines all actions needed)

pacemaker-controld
(coordinates all actions)

pacemaker-fenced pacemaker-attrd
(executes fencing agents) (manages node attributes)

pacemaker-based (reads and writes cluster configuration and status)

OEBPS/images/pcmk-stack-small.png
Pacemaker Stack

OEBPS/Common_Content/images/3.png

OEBPS/images/pcmk-shared-failover.png
Shared Failover

- - Synch,

Services
Synch

synch

Pacemaker

Cluster
Software

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
Pacemaker

OEBPS/Common_Content/images/16.png

OEBPS/images/pcmk-shared-failover-large.png
Shared Failover

- - Synch

Synch
Pacemaker
Cluster
Software

Hardware

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/images/pcmk-colocated-sets-large.png

OEBPS/images/Console.png
Cent0S Linux 7 (Core)
Kernel 3.18.8-862.e17.x86_64 on an x86_64

pmk-1 login: root
Passuord: _

OEBPS/images/pcmk-overview-small.png
Pacemaker 10,000ft

L

OEBPS/images/pcmk-active-passive-large.png
Active / Passive

Synch
Pacemaker
Cluster
Software

OEBPS/images/pcmk-active-active-small.png
Active / Active

Services b Obue | Dbase
Cluster
Software

Hardware

OEBPS/images/Policy-Engine-small.dot
 digraph "g" {
"rsc1_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc1_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc1_stop_0 pcmk-1" [style=dashed color="red" fontcolor="black"]
"rsc1_start_0 pcmk-2" [style=dashed color="red" fontcolor="black"]
"rsc1_stop_0 pcmk-1" -> "rsc1_start_0 pcmk-2" [style = dashed]
"rsc1_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc1_start_0 pcmk-2" [style = dashed]

"rsc2_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc2_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc2_stop_0 pcmk-1" [style=dashed color="red" fontcolor="black"]
"rsc2_start_0 pcmk-2" [style=dashed color="red" fontcolor="black"]
"rsc2_stop_0 pcmk-1" -> "rsc2_start_0 pcmk-2" [style = dashed]
"rsc2_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc2_start_0 pcmk-2" [style = dashed]

"rsc3_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc3_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc3_stop_0 pcmk-1" [style=dashed color="blue" fontcolor="orange"]
"rsc3_start_0 pcmk-2" [style=dashed color="blue" fontcolor="black"]
"rsc3_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc3_start_0 pcmk-2" [style = dashed]

"probe_complete pcmk-2" -> "probe_complete" [style = bold]
"probe_complete pcmk-2" [style=bold color="green" fontcolor="black"]
"probe_complete" [style=bold color="green" fontcolor="orange"]

"all_stopped" [style=dashed color="red" fontcolor="orange"]

}

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
Z

Pacemaker

OEBPS/Common_Content/images/37.png

OEBPS/images/pcmk-overview.png
Pacemaker 10,000ft

Cluster Resource Manager

OEBPS/images/two-sets.png

OEBPS/Common_Content/images/7.png

OEBPS/images/Policy-Engine-small.png

OEBPS/Common_Content/images/warning.png

OEBPS/images/pcmk-active-active-large.png
Active / Active

Services

Cluster
Software

Hardware

URL URL URL URL
Mail Mail Mail Mail
D'base D'base D'base D'base
Web Site Web Site | Web Site | Web Site
GFS2 GFS2 GFS2 . GFS2

- Pacemaker
| TS

Host

’[(Host

’ l(Host

H(Host

Shared Storage

OEBPS/images/pcmk-stack.png
Pacemaker Stack

Pacemaker

OEBPS/images/pcmk-overview-large.png
Pacemaker 10,000ft

Cluster Resource Manager

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/9.png

OEBPS/images/pcmk-shared-failover-small.png
Shared Failover

Cluster
Software

Hardware

OEBPS/images/pcmk-colocated-sets-small.png
()
PN
0*@<@—G*@

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/images/Network.png
Please name this-samnutar_Tha

hostname identi Editing System ethO
network

Connection name: | System etho

Hostname: [pemk-Lcluste

Connect automatically
Wired | 802.1x Security PV Settings
Method: | Manual

Addresses

servers 192.168.122.1

arch domains: [clusterlaps.org

Require IPv4 addressing for this connection to complete

Routes.

Configure Network
Available to all users

OEBPS/Common_Content/images/17.png

OEBPS/images/pcmk-stack-large.png
Pacemaker Stack

Build Dependency

Pacemaker

OEBPS/images/pcmk-active-passive-small.png
Active / Passive

[| o=]
E==N
Services

- Pacemaker
soitusre

1}

Hardware

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/images/pcmk-active-passive.png
Active / Passive

Services

Cluster
Software

Hardware

Synch

Synch

Pacemaker

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/images/Editing-eth0.png
File View Sendkey Help

NETWORK & HOST NAME

Done

Host name:

Ethernet (eth0)

[

v Editing etho

Connection name: | etho

General Ethernet 802.1X Sec DCB

Method: | Manual

Proxy

IPv4 Settings IPv6 Sett

Addresses
Add
192.168.122.101 24 192.168.122.1
Delete
DN servers 192.168.122.1
Search domains
DHCP client ID
() Require IPva addressing for this connection to complete
Routes.
Cancel Save

Configure.

pemk-L localdomain Apply

Current host name:

pemk-L localdomain

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/images/Welcome.png
File View Sendkey Help

CENTOS 7 INSTALLATION

% . Help!

WELCOME TO CENTOS 7.

What language would you like to use during the installation process?

English English English (United States)

Afrikaans Afrikaans English (United Kingdom)
e Amharic English (India)
el Aabic English (Australia)
. Koo English (Canada)
English (Denmark)
Asturianu Asturian English (Ireland)
benapyckan Belarusian English (New Zealand)
Bonrapcku Bulgarian English (Nigeria)
teat Bengali English (Hong Kong SAR China)
Bosanski Bosnian English (Philippines)
Catals Catalan English (Singapore)
Cettina Crech English (South Africa)
Cymracg Weish English (Zambia)
English (Zimbabue)
Dansk Danish English (Botswana)
Deutsch German Fnalish (Antiaua & Barbuda)
| a

Quit

OEBPS/images/Policy-Engine-small-large.png
rsc2_monitor_0 pcmk-2

probe_complete pcmk-2

rscl_monitor_0 pcmk-2 rsc3_monitor_0 pcmk-2

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/images/Policy-Engine-big.dot
digraph "g" {
"Cancel drbd0:0_monitor_10000 frigg" -> "drbd0:0_demote_0 frigg" [style = bold]
"Cancel drbd0:0_monitor_10000 frigg" [style=bold color="green" fontcolor="black"]
"Cancel drbd0:1_monitor_12000 odin" -> "drbd0:1_promote_0 odin" [style = bold]
"Cancel drbd0:1_monitor_12000 odin" [style=bold color="green" fontcolor="black"]
"IPaddr0_monitor_5000 odin" [style=bold color="green" fontcolor="black"]
"IPaddr0_start_0 odin" -> "IPaddr0_monitor_5000 odin" [style = bold]
"IPaddr0_start_0 odin" -> "MailTo_start_0 odin" [style = bold]
"IPaddr0_start_0 odin" -> "group_running_0" [style = bold]
"IPaddr0_start_0 odin" [style=bold color="green" fontcolor="black"]
"MailTo_start_0 odin" -> "group_running_0" [style = bold]
"MailTo_start_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:0_demote_0 frigg" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"drbd0:0_demote_0 frigg" -> "ms_drbd_demoted_0" [style = bold]
"drbd0:0_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_monitor_12000 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_post_notify_demote_0 frigg" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"drbd0:0_post_notify_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_post_notify_promote_0 frigg" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"drbd0:0_post_notify_promote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_pre_notify_demote_0 frigg" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"drbd0:0_pre_notify_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_pre_notify_promote_0 frigg" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"drbd0:0_pre_notify_promote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:1_monitor_10000 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_post_notify_demote_0 odin" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"drbd0:1_post_notify_demote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_post_notify_promote_0 odin" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"drbd0:1_post_notify_promote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_pre_notify_demote_0 odin" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"drbd0:1_pre_notify_demote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_pre_notify_promote_0 odin" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"drbd0:1_pre_notify_promote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_promote_0 odin" -> "drbd0:1_monitor_10000 odin" [style = bold]
"drbd0:1_promote_0 odin" -> "ms_drbd_promoted_0" [style = bold]
"drbd0:1_promote_0 odin" [style=bold color="green" fontcolor="black"]
"group_running_0" [style=bold color="green" fontcolor="orange"]
"group_start_0" -> "IPaddr0_start_0 odin" [style = bold]
"group_start_0" -> "MailTo_start_0 odin" [style = bold]
"group_start_0" -> "group_running_0" [style = bold]
"group_start_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-post_notify_demoted_0" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" -> "drbd0:1_monitor_10000 odin" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" -> "ms_drbd_pre_notify_promote_0" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-post_notify_promoted_0" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" -> "drbd0:1_monitor_10000 odin" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" -> "group_start_0" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-pre_notify_demote_0" -> "ms_drbd_demote_0" [style = bold]
"ms_drbd_confirmed-pre_notify_demote_0" -> "ms_drbd_post_notify_demoted_0" [style = bold]
"ms_drbd_confirmed-pre_notify_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-pre_notify_promote_0" -> "ms_drbd_post_notify_promoted_0" [style = bold]
"ms_drbd_confirmed-pre_notify_promote_0" -> "ms_drbd_promote_0" [style = bold]
"ms_drbd_confirmed-pre_notify_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_demote_0" -> "drbd0:0_demote_0 frigg" [style = bold]
"ms_drbd_demote_0" -> "ms_drbd_demoted_0" [style = bold]
"ms_drbd_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_demoted_0" -> "ms_drbd_post_notify_demoted_0" [style = bold]
"ms_drbd_demoted_0" -> "ms_drbd_promote_0" [style = bold]
"ms_drbd_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_post_notify_demoted_0" -> "drbd0:0_post_notify_demote_0 frigg" [style = bold]
"ms_drbd_post_notify_demoted_0" -> "drbd0:1_post_notify_demote_0 odin" [style = bold]
"ms_drbd_post_notify_demoted_0" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"ms_drbd_post_notify_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_post_notify_promoted_0" -> "drbd0:0_post_notify_promote_0 frigg" [style = bold]
"ms_drbd_post_notify_promoted_0" -> "drbd0:1_post_notify_promote_0 odin" [style = bold]
"ms_drbd_post_notify_promoted_0" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"ms_drbd_post_notify_promoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_pre_notify_demote_0" -> "drbd0:0_pre_notify_demote_0 frigg" [style = bold]
"ms_drbd_pre_notify_demote_0" -> "drbd0:1_pre_notify_demote_0 odin" [style = bold]
"ms_drbd_pre_notify_demote_0" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"ms_drbd_pre_notify_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_pre_notify_promote_0" -> "drbd0:0_pre_notify_promote_0 frigg" [style = bold]
"ms_drbd_pre_notify_promote_0" -> "drbd0:1_pre_notify_promote_0 odin" [style = bold]
"ms_drbd_pre_notify_promote_0" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"ms_drbd_pre_notify_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_promote_0" -> "drbd0:1_promote_0 odin" [style = bold]
"ms_drbd_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_promoted_0" -> "group_start_0" [style = bold]
"ms_drbd_promoted_0" -> "ms_drbd_post_notify_promoted_0" [style = bold]
"ms_drbd_promoted_0" [style=bold color="green" fontcolor="orange"]
}

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/images/pcmk-internals-large.png
Pacemaker internals

pacemakerd (launches and monitors all other daemons)

pacemaker-execd pacemaker-schedulerd
(executes resource agents) (determines all actions needed)

pacemaker-controld
(coordinates all actions)

pacemaker-fenced pacemaker-attrd
(executes fencing agents) (manages node attributes)

pacemaker-based (reads and writes cluster configuration and status)

= ClusterLabs

OEBPS/Common_Content/images/1.png

OEBPS/images/pcmk-colocated-sets.png

OEBPS/images/resource-set.png

OEBPS/images/Policy-Engine-big-large.png
ms_drbd_pre_notify_demote_0

Y
deO:O_pre_notify_demote_O frigg @do: 1_pre_notify_demote_0 odD
Y

ms_drbd_conﬁrmed—pre_notify_demote_D

< Cancel drbd0:0_monitor_10000 frigg__> ms_drbd_demote_0
drbd0:0_demote_0 frigg

ms_drbd_demoted_0

Y

ms_drbd_post_notify_ demote

/\

deOl _post_notify_demote Oodln drde 0_post_notify_demote 0fr1gg>

<ms_drbd_conﬁrmed—post_notify_demoted_O

\

@_drbd_pre_notify_promote_O

deO:1_pre_n0tify_pr0mote_0 odD deo:0_pre_n0tify_prom0te_0 frigg> /

T~

Qs_drbd_c0nﬁrmed—pre_notify_promote_D
ms_drbd_promote_0

@ncel drbd0:1_monitor_12000 odD

drbd0:1_promote_0 odin

ms_drbd_promoted_0

@_drbd_post_notify_promoted_O
deO: 1_post_notify_promote_0 odin deO:O_post_notify_promote_O friD

ms_drbd_conﬁrmed—post_notify_promoted_D

A 4

@do:o_monitor_nooo frigg

group_start_0

drbd0:1_monitor_10000 0@

IPaddr0_start_0 odin

A 4
@ddrO_monitor_SOOO 0@
group_running_0

MailTo_start_0 odin

OEBPS/images/pcmk-internals-small.png
T ——

—
S pacomaker:scheduord
pacemaker.controld

pacemaka fonced pacemaker-atird

T T ——————

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/images/Policy-Engine-big.png
ms_drbd_pre_notify_demote_0

dibd0:0_demote_0 frigg

ms_drbd_demoted_0

ms_drbd_post_n¢

drbd0:1_post_notify_demote_0 odin

otify_demoted_0

drbd0:0_post_notify_demote_0 frigg

ost_notify_demoted_0

ms_drbd_pre_notify_promote_0

drbd0:1_pre_notify_promote_0 odin drbd0:0_pre_notify_promote_0 frigg
<ms,drbd,conﬂrmedrpre,nom y,promole,o>

ms_drbd_promote_0 Cancel drbd0:1_monitor_12000 odin

drbd0:1_pror

mote_0 odin

ms_drbd_post_notify_promoted_0

drbd0:1_post_notify_promote_0 odin drbd0:0_post_notify_promote_0 frigg
_ms_drbd_confirmed-post_notify_promoted_0___—>

IPaddr0_start_0 odin

1Paddr0_monitor_5000 odin

MailTo_start_0 odin

OEBPS/Common_Content/images/38.png

OEBPS/images/pcmk-active-active.png
Active / Active

Services

Cluster
Software

Hardware

we [wee [we [e
vai [wan [wan [wman
Dbase | [obase | D'base J [pase
Website | Website [Web site Web site
ors2 || ors2 [ers2 [ers2

Host

Host | Host

Host

Shared Storage

OEBPS/Common_Content/images/8.png

